REVIEW TOPIC OF THE WEEK

Anticoagulation During Pregnancy

Evolving Strategies With a Focus on Mechanical Valves

Laith Alshawabkeh, MD, MSc, a,b Katherine E. Economy, MD, MPH, Anne Marie Valente, MD a,b

ABSTRACT

Pregnancy is associated with a hypercoagulable state. Women requiring anticoagulation need careful attention throughout pregnancy and the post-partum period. The choice of anticoagulant therapy, the degree of monitoring, and the therapeutic target should be modulated by balancing the risks and the benefits to the mother and fetus. Many of the available anticoagulant agents may be used safely in pregnancy, but they are disadvantaged by competing efficacy and risks to the mother and fetus. For example, vitamin K antagonists are the most efficacious for preventing mechanical valve thrombosis, but they pose risks to the fetus. Collaborative research that collects patient-level data will help clinicians navigate the intricate process of anticoagulation in pregnancy. Development of anticoagulant agents that are homogeneous, efficacious, safe to the fetus, and not affected by physiological perturbations of pregnancy will have tremendous effect on the outcomes of pregnancy in women who require anticoagulation. (J Am Coll Cardiol 2016;68:1804–13) © 2016 by the American College of Cardiology Foundation.

regnancy is a prothrombotic state. The coalescence of venous stasis and hypercoagulability results in nearly a 5-fold increase in the risk of venous thromboembolism (VTE) during pregnancy. This risk remains elevated until 12 weeks post-partum (1). The goal of anticoagulation during pregnancy is to safely balance the maternal risk of thromboembolism and hemorrhage with the fetal risk of exposure to oral vitamin K antagonists (VKAs). The continuously changing pharmacokinetics of low molecular weight heparins (LMWH) during the various stages of pregnancy adds an additional challenge. The risks of various anticoagulation strategies must be acknowledged, and the choice of anticoagulant agent must be individualized on the basis of maternal and fetal factors (Central Illustration). Factors to consider include cumulative risks of the underlying disease process that warrants anticoagulation, medication side effects, compliance with medical therapy, and physician/patient choices for mode of delivery.

This review will examine strategies for anticoagulation during and after pregnancy, with a focus on women with mechanical heart valves. Development of more standardized monitoring protocols and the use of novel anticoagulant agents will be discussed.

RELEVANT PHYSIOLOGY IN PREGNANCY

RISK OF THROMBOSIS. As pregnancy progresses, the risk of hypercoagulability increases, due to increasing levels of thrombogenic factors VII, VIII, and X; von Willebrand factor; and fibrinogen, and decreases in protein S (2). The risk is highest in the immediate post-partum period and slowly decreases back to prepregnancy levels by 8 to 12 weeks post-partum (3). In accordance with these observations, one might expect most thrombotic complications to occur in the post-partum period. However, in women with mechanical heart valves, valve thrombosis often occurs during the first trimester (4). In contrast, VTE in

Listen to this manuscript's audio summary by JACC Editor-in-Chief Dr. Valentin Fuster.

From the ^aDepartment of Cardiology, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts; ^bDepartment of Medicine, Division of Cardiology, Brigham and Women's Hospital, Boston, Massachusetts; and the ^cDepartment of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Brigham and Women's Hospital, Boston, Massachusetts. The authors have reported that they have no relationships relevant to the contents of this paper to disclose.

pregnancy occurs in a more predictable fashion, with the highest risk in the puerperium (5). Valve thrombosis may occur earlier in pregnancy due to subtherapeutic anticoagulation during transition from VKAs to heparins in the early stages of pregnancy, continuously changing anticoagulant agent pharmacokinetics (particularly LMWH) in pregnancy that lead to underdosing, or other, unidentified homeostatic factors germane to patients with mechanical valves (6-8). In addition, some women may discontinue VKAs once a diagnosis of pregnancy is made due to concerns about the teratogenic effects of these agents. This may occur prior to the initiation of another anticoagulant agent, leading to lapses in anticoagulation.

RISK OF BLEEDING. Delivery poses the greatest risk for bleeding. Women must be transitioned off longacting anticoagulant agents to receive regional anesthesia or undergo Cesarean delivery (4). The American Society of Regional Anesthesia and Pain Medicine recommends that women have an international normalized ratio (INR) ≤1.5 or that LMWH is discontinued for at least 12 to 24 h before undergoing lumbar instrumentation (9). Additionally, VKAs cross the placenta, increasing the risk of fetal bleeding during delivery. Therefore, a delicate balance must be achieved to minimize these risks while protecting the gravida against thrombosis.

DRUG PHARMACODYNAMICS AND PHARMACOKINETICS.

The most significant increases in glomerular filtration rate occur during the second trimester and continue through the post-partum period (10). Medications that are cleared by the kidney typically require proactive dose-adjustment throughout pregnancy. These adjustments for maternal physiological changes are imperative in the case of mechanical valves. Table 1 summarizes select anticoagulant agents and their implications in pregnancy, with Food and Drug Administration (FDA) pregnancy category classifications. Several decades ago, the FDA established 5 categories to indicate the potential of a drug to cause birth defects if used during pregnancy (Online Table 1). The categories are determined by the reliability of documentation and the risk to benefit ratio. They do not take into account any risks from pharmaceutical agents or their metabolites in breast milk. Most currently available anticoagulant agents are category B; VKAs are classified as category X for their first-trimester effects, except in the presence of mechanical heart valves, where they are considered category D (11,12). However, in December 2014, the FDA published the Pregnancy and Lactation Labeling Rule, which requires the removal of these categories from all human prescription drugs and biological products, and replaces them with subsections that provide details about the use of the drug in pregnancy and lactation in women and men of reproductive potential (13). The pregnancy section will include potential risks to the developing fetus, known dosing alterations in pregnancy, effects of timing and duration of exposure during pregnancy, maternal adverse reactions, effects of the drug on labor and delivery, and information on a pregnancy exposure registry for the drug, if one exists. These changes went into

effect on June 30, 2015. Most available medications will not have been relabeled by the time this document is published, and their current labels still carry the prior category classification.

FETAL CONSIDERATIONS. VKAs cross the placenta and have a dose-dependent relationship with increased adverse outcomes, such as miscarriage, stillbirth, and embryopathy, occurring predominantly at doses >5 mg daily (14). The rate of miscarriage (<24 weeks gestation) in a large series of pregnant patients with mechanical valves was 28.6% in women receiving VKAs in the first trimester compared with 9.2% in women receiving any form of heparin (p < 0.001) (4). The risk of late fetal mortality (>24 weeks gestation) was also significantly higher in women who received VKAs in the first trimester (p = 0.016). In a metaanalysis of studies of anticoagulant agents in pregnancy, the rate of fetal wastage, defined as spontaneous abortion, therapeutic abortion, stillbirth, and neonatal death, was 19.2% in the low-dose (≤5 mg) warfarin group versus 63.9% in the high-dose group. Importantly, a heparin strategy in the first trimester followed by VKAs in the remainder of pregnancy did not eliminate the risk of fetal wastage (22.7%), in contrast to a strategy of LMWH throughout pregnancy which was associated with a 12.2% rate of fetal wastage (15).

Vitamin K antagonism suppresses carboxylation of gamma-carboxyglutamic acid, a component of osteocalcin and other bone proteins, which may result in fetal embryopathy (occurrence 4% to 7%), characterized by nasal cartilage hypoplasia (16-18). During vaginal delivery, use of VKAs is associated with a higher risk of fetal hemorrhage, most dangerously intracranial bleeding (15). Careful planning of the timing and mode of delivery is critical. Some investigators advocate a planned Cesarean delivery for mothers who take any VKAs (19). However, the mode of delivery should be guided by obstetric indications with the caveat that women who present in labor fully anticoagulated with VKAs should undergo Cesarean

ABBREVIATIONS AND ACRONYMS

INR = international normalized

LMWH = low molecular weight heparin

TEC = thromboembolic complications

UFH = unfractionated heparin

VKA = vitamin K antagonist

VTE = venous

thromboembolism

CENTRAL ILLUSTRATION Balancing the Risks of Anticoagulation in Pregnancy Consideration for Anticoagulation in Pregnancy Pregnancy is a prothrombotic state with nearly a 5-fold increased risk of VTE. Choice of anticoagulant must balance maternal risk with fetal risk. VKAs are safest for the mother, and complications to the fetus are dose-dependent. Fetal loss Embryopathy Bleeding LMWH requires frequent monitoring of anti-Xa levels, and despite therapeutic levels, thrombotic events may occur particularly in women with MHV. Women should be converted to IV UFH prior to planned Frequent monitoring of anticoagulation is essential. delivery to prevent life-threatening fetal bleeding Some women may require urgent delivery while taking VKAs. Cesarean delivery is recommended for fetal protection Risk of maternal thrombosis remains elevated in the postpartum period. Alshawabkeh, L. et al. J Am Coll Cardiol. 2016;68(16):1804-13.

Maternal and fetal factors should be taken into consideration when initiating or maintaining anticoagulation. Anticoagulation needs will change across trimesters and shorter acting agents should be used to decrease risk of bleeding at delivery. While vitamin K antagonists may be the safest choice for preventing thromboembolism, they carry risk of fetal loss, embryopathy, and hemorrhage. IV = intravenous; LMWH = low molecular-weight heparin; MHV = mechanical heart valve; UFH = unfractionated heparin; VKAs = vitamin K antagonists; VTE = venous thromboembolism.

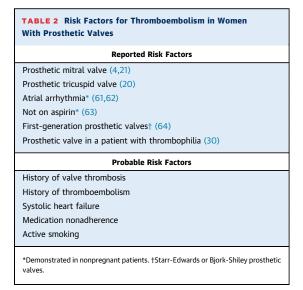
delivery for fetal protection. In this setting, massive transfusion protocols may be needed to support the mother through delivery. Heparin preparations do not cross the placenta, and thus do not exert direct effects on the fetus.

ADDITIVE RISKS. Table 2 lists the previously identified and probable additive risk factors for thrombosis. For example, patients with mitral or tricuspid mechanical valves are at particularly high risk of thromboembolic complications (TEC) in pregnancy, irrespective of the anticoagulant agent used (4,20,21).

CLINICAL PRACTICE AND EVOLVING STRATEGIES

MECHANICAL HEART VALVES. Women who have mechanical heart valves and become pregnant are at high risk of TEC (11,22). The hypercoagulability of

pregnancy is compounded by the imperfect choices of anticoagulant agents during this critical time. Mechanical valve thrombosis is the most feared complication, and carries a 20% risk of mortality (4). Current guidelines advocate 2 anticoagulation strategies.


Warfarin continued throughout pregnancy offers the best thromboembolic protection to the mother (11), but carries a higher risk of fetal loss and complications. Nevertheless, due to suboptimal alternatives, current American College of Cardiology/American Heart Association (ACC/AHA) valvular heart disease guidelines support use of warfarin at doses ≤5 mg/day throughout pregnancy. At these doses, the risk of fetal toxicity is much lower than at higher doses, a finding further supported by a recent meta-analysis (15). When the dose to achieve the target INR exceeds 5 mg, substitution with LMWH or

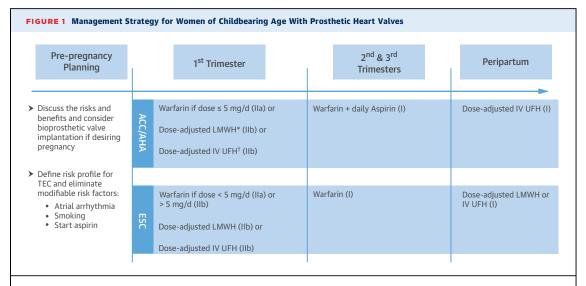
continuous unfractionated heparin (UFH) during the first trimester, the critical phase of organogenesis, is recommended (Figure 1, Online Table 2). There are several points worth highlighting with this approach. Although this strategy minimizes both embryopathy and fetal wastage, the anticoagulant effect of warfarin in the fetus remains high, and it is unclear how long before a planned vaginal delivery warfarin needs to be withheld to eliminate the risk of traumatic intracranial hemorrhage in the fetus (22). For example, if labor ensues prematurely, a Cesarean delivery might be safer for the fetus but carries a higher risk of bleeding for the mother, in addition to the usual postoperative risks. Although giving vitamin K to reverse warfarin's effect in the mother may seem appropriate, it is unclear whether it would reverse warfarin's effect in the fetus to the same magnitude, and importantly, it could precipitate TEC in the setting of a mechanical valve. Additionally, the risk of fetal loss remains a concern with the use of VKAs throughout pregnancy, irrespective of the dose (15,16).

An alternative anticoagulant strategy is weightbased LMWH. It has superior bioavailability compared with subcutaneous UFH, is dosed twice daily, and does not cross the placenta. LMWH is cleared entirely by the kidneys; thus, fixed, weight-based dosing tends to underperform as the pregnancy advances, due to the increase in glomerular filtration rate (and clearance of LMWH) throughout pregnancy (23). Thus, as per the current guidelines, when LMWH is used, peak anti-Xa level should be checked 4 to 6 h post-dose, and LMWH carries a low risk of TEC when the levels are kept between 1.0 to 1.2 U/ml (23-25). However, concerningly, thrombotic events still occur in patients who achieve therapeutic peak anti-Xa levels (4). One potential explanation is that peak anti-Xa levels might not be adequate to ascertain therapeutic anticoagulation. In a study of 30 pregnant women receiving LMWH, peak anti-Xa was in an "optimal" therapeutic range of 0.8 to 1.2 U/ml in 115 of 187 of the measurements, and subsequent trough levels were subtherapeutic (<0.6 U/ml) in 66 (57%) of these measurements (26). This study advocates a strategy of monitoring trough levels in pregnant women with mechanical valves, particularly women who are at high risk of TEC.

Two observations are worth discussing. First, LMWH successfully treats and prevents thromboembolism in pregnant women (27). The additive risk of thrombosis in the setting of mechanical valve is, perhaps, unique and may not be eliminated by close monitoring of LMWH. Warfarin may be more efficacious than LMWH in preventing thrombosis of mechanical heart valves because warfarin targets factor

TABLE 1 Select	TABLE 1 Select Anticoagulant Agents and Implications in Pregnancy	is in Pregnancy					
Drug	Mechanism	Therapeutic Dose	Monitoring	Metabolism/Clearance	Pregnancy Category	Present in Breast Milk	Crosses the Placenta
Warfarin	Vitamin K antagonism	Variable	INR	Hepatic	O	N _O	Yes
Unfractionated heparin	Antithrombin by potentiating antithrombin III	Variable (IV or SC)	аРТТ	Hepatic	U	No	N
Enoxaparin	Inhibits factor Xa and potentiates antithrombin III	1 mg/kg dose every 12 h	Peak anti-Xa level 4-6 h after dose	Hepatic metabolism and renal clearance	В	N O	N N
Dalteparin	Inhibits factor Xa and thrombin	100 U/kg dose every 12 h	Peak anti-Xa level 4-6 h after dose	Renal	В	No	No
Fondaparinux	Inhibits factor Xa and potentiates antithrombin III	5-10 mg once daily	Peak anti-Xa level 4-6 h after dose	Renal	В	Unknown	_Q
Dabigatran	Direct thrombin inhibitor	110-150 mg twice daily	NA	Mainly renal excretion	U	Unknown	Likely (57)
Apixaban	Selective Xa inhibitor	2.5-10.0 mg twice daily	٩	Hepatic metabolism and excreted in urine and feces	В	Unknown	Yes (58)
Rivaroxaban	Selective Xa inhibitor	15-20 mg once daily	Ϋ́	Hepatic metabolism and excreted in urine and feces	U	Unknown	Likely (59)
Edoxaban	Selective Xa inhibitor	30-60 mg once daily	٧×	Hydrolysis and excreted primarily in the urine	U	Unknown	Likely (60)
aPTT = activated part	aPTT = activated partial thromboplastin time, INR = international normalized ratio; IV = intravenous, NA = not applicable; SC = subcutaneous.	ormalized ratio; IV $=$ intravenous; N_l	4 = not applicable; SC = subcutaneous.				

IX (involved in the contact-activation pathway), which leads to generation of thrombin after contact of blood with the foreign surface of the valve structure, and targets factor VII of the extrinsic tissue-factor pathway, which is known to be activated in pregnancy (28). Also, warfarin inhibits factor X in the common pathway. The finding that dabigatran, an oral direct thrombin inhibitor, was associated with a higher rate of valve thrombosis in patients shortly after placement of mechanical valves compared with warfarin further supports this hypothesis (29). LMWH might be advantageous in patients with thromboembolic disease, but not for a mechanical heart valve in the setting of a parous


hypercoagulable state. Alternative therapeutic approaches, pharmacological preparations, or monitoring strategies of LMWH might achieve better thromboembolic protection.

Second, in the Registry of Pregnancy and Cardiac Disease analysis of 212 women with mechanical heart valves, 10 women experienced a mechanical valve thrombosis, of which 5 occurred in the first trimester, after switching from VKAs to heparin (4). This may have been a consequence of subtherapeutic anti-Xa levels during the transition between anticoagulant agents. In 1 study, a mean 54.4% increase in the dose of LMWH was required throughout pregnancy to maintain therapeutic peak anti-Xa; thus, weightbased initiation should be followed by close monitoring and, perhaps, by trough dosing in the setting of prosthetic valves (30).

Subcutaneous UFH at therapeutic doses was 1 of the first agents used as an alternative to VKAs. It carries a high risk of TEC and its use has largely been abandoned, except in developing countries (4). Intravenous UFH, however, is indicated in women around the time of delivery, due to its rapid onset and clearance.

Dabigatran and the oral direct factor Xa inhibitors are contraindicated for mechanical heart valves. Their use in pregnancy may be limited, as they also cross the placenta (11).

THROMBOPHILIA AND VTE. Women with thrombophilia or a history of VTE who take anticoagulant agents before pregnancy should continue anticoagulation during pregnancy. **Table 3** summarizes

*Start 1 mg/kg twice daily, guided by weekly anti-Xa levels to achieve a peak 0.1 to 1.2 U/ml and trough >0.6 U/ml. †Activated partial thromboplastin time at least 2× control. ACC/AHA = American College of Cardiology/American Heart Association; ESC = European Society of Cardiology; IV = intravenous; LMWH = low molecular weight heparin; TEC = thromboembolic complications; UFH = unfractionated heparin.

the American Congress of Obstetrics and Gynecology recommendations requiring anticoagulation in at-risk pregnant women, which were synthesized, in part, with the American College of Chest Physicians (31).

LMWH offers advantages over UFH, including a longer half-life, efficacy with once-daily dosing, and weight-based dosing. Importantly, there are no documented fetal or neonatal risks to maternal use of LMWH during pregnancy. In a pooled analysis of 174 pregnant women on a therapeutic dose of LMWH, 2 experienced deep venous thrombosis and none experienced arterial embolism, supporting the efficacy of LMWH for prophylaxis of VTE (27). Low-risk pregnant women who need anticoagulation for the prevention of VTE probably do not need special monitoring.

LMWH preparations with longer half-lives might offer more stable anticoagulation coverage. The American Congress of Obstetrics and Gynecology recommends fondaparinux, an indirect factor Xa inhibitor, for anticoagulation in the setting of heparininduced thrombocytopenia or other heparin allergy. Fondaparinux is an attractive alternative, as its long half-life (15 to 17 h) allows once-daily subcutaneous dosing. However, this also raises concerns for prolonged anticoagulant agent activity up to 48 h after the last dose (32,33). Due to its long half-life, fondaparinux should be discontinued in the late third trimester due to concerns for regional anesthesia and bleeding around delivery (9).

The newer oral anticoagulant agents are increasingly used in women prior to pregnancy. However, there is a scant evidence to guide therapy in these women during pregnancy, as oral direct thrombin inhibitor and direct factor Xa inhibitors have not been systematically examined in pregnancy. In a study of 37 pregnancies in women who were taking rivaroxaban and were exposed to it during the first trimester, there were 6 spontaneous abortions, 8 elective terminations of pregnancy, and 23 live births (34). Because these medications cross the placenta, their safety in pregnancy cannot be substantiated with this level of evidence (4,20,21).

LIMITATIONS IN CURRENT RESEARCH

The current evidence is limited by inherent biases of single-center case series, small sample sizes, and lack of control arms. The majority of studies enroll patients after they present in the first trimester of pregnancy; thus, there is variable capture of exposure time to whatever therapy they were taking prior to pregnancy. This results in inaccurate ascertainment of risk attributable to the anticoagulant agents

TABLE 3 The American College of Obstetricians and Gynecologists Guidelines for Prevention of Thromboembolism in Pregnancy*

	•	
Clinical Scenario	Antepartum	Post-Partum
High risk†		
No history of VTE	Prophylactic dose	Therapeutic dose
History of VTE	Intermediate or therapeutic dose	Therapeutic dose
Low risk‡		
No history of VTE	Surveillance	Surveillance or prophylactic dose if additional risk factors§
History of VTE	Surveillance or prophylactic dose	Intermediate or therapeutic dose
History of single VTE		
Related to pregnancy, estrogen, or idiopathic	Prophylactic dose	Therapeutic dose
Unrelated to pregnancy or estrogen	Surveillance	Therapeutic dose
History of ≥2 VTE		
Taking anticoagulation	Therapeutic dose	Therapeutic dose
Not taking anticoagulation	Prophylactic or therapeutic dose	Therapeutic dose

*Adapted with permission from Yarrington et al. (31). †Antithrombin deficiency; double heterozygous for prothrombin G20210A mutation and factor V Leiden; factor V Leiden homozygous or prothrombin G20210A mutation homozygous. ‡Factor V Leiden heterozygous; prothrombin G20210A heterozygous; protein C or protein S deficiency. §First-degree relative with a history of a thrombotic episode before 50 years of age, or other major thrombotic risk factors (obesity or prolonged immobility).

VTE = venous thromboembolism.

that are subsequently chosen in the later stages of pregnancy.

Second, the contribution of the underlying heart disease and functional status to maternal and fetal risks in women with mechanical valves has not been explored. In the European Registry on Pregnancy and Heart disease of over 1,300 pregnant women with structural heart disease, pre-pregnancy functional status was found to be the most predictive factor for maternal and fetal complications (35). In the absence of control arms, it is not possible to untangle the additive (or deductive) risk of the underlying cardiac pathology (e.g., rheumatic, congenital, or acquired etiologies). Last, the ACC/AHA guidelines suggest a VKA approach when feasible to minimize maternal complications. Although the rate of maternal TEC is lower with VKAs, and embryopathy is decreased with lower doses of VKAs, the rate of fetal loss remains high. Until a better anticoagulant agent becomes available, clinicians must use the evidence at hand to guide therapeutic decisions (Central Illustration).

FUTURE DIRECTIONS AND POTENTIAL STRATEGIES

DECISIONS PRIOR TO PREGNANCY. Finding the delicate balance between adequate anticoagulation

of the mother and fetal safety poses a challenging dilemma for clinicians caring for women who require anticoagulation during pregnancy. It is imperative to identify these women pre-pregnancy and provide appropriate pre-conceptual counseling. This is particularly important for women with mechanical heart valves, who must accept that despite meticulous anticoagulation and strict adherence to guidelines, the risk for valve thrombosis and for maternal and fetal adverse outcomes is still high.

Several investigators have suggested innovative approaches to managing women with mechanical heart valves. De Santo et al. (19) "challenged" 22 young women referred for valve replacement with VKAs prior to undergoing valve replacement surgery. The goal was to determine the dose required to achieve a therapeutic INR as a guide to the decision of whether to place a mechanical or a bioprosthetic valve at the time of cardiac surgery. Women who were able to achieve therapeutic INR using <5 mg warfarin were encouraged to undergo a mechanical valve replacement, and all were in the aortic position. Conversely, women requiring ≥5 mg warfarin were advised to undergo bioprosthetic valve placement. Only 2 women had mitral valve disease and subsequently received bioprosthetic valves. Newergeneration mechanical aortic valves were used in most patients with a target INR of 1.5 to 2.5.

Although this study was performed in a single center with a small number of participants, it highlights the feasibility of a tactful approach for a select group of women with aortic valve disease. Newergeneration mechanical valves in the aortic position may permit a lower INR threshold in pregnancy. An argument could also be made to substitute VKAs for LMWH in women who are at low risk of TEC, due to the risk of fetal loss when any dose of VKAs is used. Furthermore, contrary to earlier reports that indicated possible early deterioration of bioprosthetic valves after pregnancy, later studies using newer valve designs did not show such findings, which corroborate the strategy of offering such valves to women of childbearing age (36-38).

A total of 50% of valve thrombosis events reported in the European Society of Cardiology Registry of Pregnancy and Cardiac Disease occurred in the first trimester, not in late pregnancy (4). It is difficult to draw conclusions from registry data, as it is unclear whether these women were off anticoagulation for a period of time or had inefficient bridging. Nevertheless, this observation is at odds with first principles: more events should occur later in pregnancy because of the increasingly hypercoagulable state as the

pregnancy progresses. We hypothesize that the switch, in most instances, from VKAs to LMWH in the first trimester (usually by starting weight-based LMWH for the first few doses), in the setting of higher renal clearance during early stages of pregnancy, explains the observed higher risk of TEC in the first trimester. It also highlights the vulnerability of these women to medication changes and resultant fluctuation in anticoagulation in the setting of the hypercoagulable state of pregnancy. In the general population, high variability of anticoagulation is a strong predictor of reduced survival in patients with mechanical heart valves (39).

Until better therapy is available, active surveillance and early institution of an appropriate dose of LMWH for women who are at high risk of TEC is important. Ideally, the medication would be switched once pregnancy is diagnosed and titrated aggressively according to anti-Xa levels (with consideration of using peak and trough dosing). It is crucial to educate women preconceptually on the risks of suboptimal anticoagulation and to formulate a personalized plan as soon as they desire pregnancy.

MONITORING STRATEGIES. Trough anti-Xa levels have been proposed as complementary to peak anti-Xa levels (40,41). In an elegant study, Patel et al. evaluated the pharmacokinetics of enoxaparin in various stages of pregnancy (42). For a given dose of enoxaparin, anti-Xa trough levels are affected by volume of distribution, whereas peak anti-Xa levels are mainly determined by creatinine clearance. During early stages of pregnancy, there is a greater increase in creatinine clearance compared with the increase in the volume of distribution (43). As pregnancy progresses, the maternal volume of distribution increases and reaches a point where it equals the increase in creatinine clearance compared to prepregnancy values (42). Thus, one might conclude that monitoring trough levels might be important during the first trimester, particularly in patients who achieve therapeutic peak anti-Xa levels, to ensure that trough levels >0.6 U/ml have been reached (44). Some investigators even advocate dividing the daily dose of enoxaparin into 3, instead of 2 doses to achieve a more stable steady state (45).

In certain circumstances of heightened coagulability, discrepancies exist between different laboratory tests designed to measure levels of anticoagulation. For example, in patients who experience thrombosis of ventricular prosthetic circulatory support devices and who are on continuous intravenous heparin infusion, divergent values of anti-Xa and activated partial thromboplastin time have been observed (46). Thus, in addition to drug effects, underlying pathophysiology affects measures of "functional" clotting (i.e., activated partial thromboplastin time) to a greater degree than the "drug level" measure (i.e., anti-Xa). Conversely, in practice, there is no functional test for monitoring the anticoagulant effect of LMWH. Thromboelastography, a point-of-care test for general viscoelastic parameters of blood clot formation, might prove to be a functional test for LMWH that transcends the perturbations of thrombosis in pregnancy (47).

THERAPEUTIC STRATEGIES. Antiplatelet agents also have a role in prevention of TEC in pregnancy. Current ACC/AHA valvular heart disease guidelines recommend all women with bioprosthetic heart valves to be maintained on low-dose aspirin in the second and third trimesters of pregnancy (11). There is a paucity of data on the use of other antiplatelet agents during pregnancy. The published reports did not specifically address the safety and efficacy of adding aspirin in addition to anticoagulant agents for women with mechanical valves, and there is inconsistent use of aspirin in this population. Some studies documented the use of aspirin in all participants, whereas others did not (4,24,25,30,33,48). Although it is not possible to draw definite conclusions, aspirin use in women who are at high risk of TEC appears justified. Clopidogrel inhibits platelet aggregation and activation by preventing the binding of fibrinogen to the adenosine diphosphate receptor, and there is a risk of excessive bleeding, although none has been documented. In our practice, we hold clopidogrel 7 days before a scheduled delivery to minimize the risk of post-partum hemorrhage (49,50).

The role of oral direct thrombin and direct Xa inhibitors in the treatment and prevention of VTE in pregnancy has not been explored. These medications are of low molecular weight and are known to cross the placenta. Their effects on the fetus are unknown, and their use in pregnancy is not recommended. Recently, Beyer-Westendorf et al. (51) presented an abstract reporting the outcomes of 169 pregnancies with known exposure to rivaroxaban, dabigatran, or apixaban. Although the report is the largest to date, there are substantial gaps in reporting of the outcomes and circumstances of events. Meaningful trends regarding teratogenicity and pregnancy outcomes cannot yet be ascertained from such heterogeneous data. However, as more women of childbearing age are being prescribed these anticoagulant agents, efforts should be made to further explore their efficacy and safety during pregnancy (34).

Another consideration for improvement in the outcomes for women on anticoagulation during pregnancy is attention to mode of delivery, which has direct effects on maternal outcomes, with Cesarean delivery associated with greater risks of hemorrhage, thrombosis, and infection during delivery and the post-partum period (52). Strategies to increase vaginal delivery, with the exception of women taking VKAs requiring emergent delivery, will likely help decrease complication rates around delivery.

Currently, there is no ideal anticoagulant agent available for pregnant women. Each medication has specific factors that must be taken into account. Attractive features for emerging therapies include a medication that does not cross the placenta, is easily administered, and does not need intensive monitoring. Of the currently available medications, the long-acting LMWH fondaparinux might hold promise (33,53,54). However, its long half-life poses challenges for regional anesthesia in the peripartum period. Close monitoring of any LMWH administered during pregnancy is crucial (33).

Currently available LMWHs are depolymerized from heparin, are isolated from porcine intestine, and demonstrate measurable heterogeneity in their molecular weight and activity (55). Promising new research may, importantly, allow precise chemical synthesis of hepatically-cleared heparins with lower side-effect profiles and greater homogeneity than the currently available preparations (56).

CONCLUSIONS

Women requiring anticoagulation need careful attention throughout pregnancy and the post-partum period. Risks and benefits to the mother and fetus should be balanced in the choice of anticoagulant therapy, degree of monitoring, and therapeutic target. Future research should investigate different approaches and combinations of anticoagulant agents in pregnancy, in addition to furthering our understanding of the distinctive factors that lead to thromboembolism in pregnancy. Development of anticoagulant agents that are homogeneous, efficacious, safe to the fetus, and not affected by physiological perturbations of pregnancy will have a tremendous effect on the outcomes of pregnancy in women who require anticoagulation.

REPRINT REQUESTS AND CORRESPONDENCE: Dr. Anne Marie Valente, Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115. E-mail: anne.valente@cardio.chboston.org.

REFERENCES

- 1. Heit JA, Kobbervig CE, James AH, et al. Trends in the incidence of venous thromboembolism during pregnancy or postpartum: a 30-year population-based study. Ann Intern Med 2005; 143-697-706
- 2. James AH. Pregnancy-associated thrombosis. Hematology Am Soc Hematol Educ Program 2009:277-85.
- 3. Tepper NK, Boulet SL, Whiteman MK, et al. Postpartum venous thromboembolism: incidence and risk factors. Obstet Gynecol 2014:123:987-96.
- 4. Van Hagen IM, Roos-Hesselink JW, Ruys TP, et al., for the ROPAC Investigators and the EURObservational Research Programme (EORP) Team. Pregnancy in women with a mechanical heart valve: data of the European Society of Cardiology Registry of Pregnancy and Cardiac Disease (ROPAC), Circulation 2015:132:132-42.
- 5. Jacobsen AF, Skjeldestad FE, Sandset PM. Incidence and risk patterns of venous thromboembolism in pregnancy and puerperium-a register-based case-control study. Am J Obstet Gynecol 2008:198:233 e1-7
- 6. Challis JR, Lockwood CJ, Myatt L, et al. Inflammation and pregnancy. Reprod Sci 2009;16:
- 7. Gorbet MB. Sefton MV. Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials 2004;25:5681-703.
- 8. Economy KE, Valente AM. Mechanical heart valves in pregnancy: a sticky business. Circulation 2015;132:79-81.
- 9. Horlocker TT, Wedel DJ, Rowlingson JC, et al. Regional anesthesia in the patient receiving antithrombotic or thrombolytic therapy: American Society of Regional Anesthesia and Pain Medicine Evidence-Based Guidelines (Third Edition). Reg Anesth Pain Med 2010;35:64-101.
- 10. Chapman AB, Abraham WT, Zamudio S, et al. Temporal relationships between hormonal and hemodynamic changes in early human pregnancy. Kidney Int 1998;54:2056-63.
- 11. Nishimura RA, Otto CM, Bonow RO, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2014;63:e57-185.
- 12. Regitz-Zagrosek V, Blomstrom Lundqvist B, Borghi C, et al. ESC guidelines on the management of cardiovascular diseases during pregnancy. Eur Heart J 2011;32:3147-97
- **13.** Food and Drug Administration. Content and format of labeling for human prescription drug and biological products; requirements for pregnancy and lactation labeling. Final rule. Federal Register 2014:79:72063.
- 14. Vitale N, De Feo M, De Santo LS, et al. Dose-dependent fetal complications of warfarin in pregnant women with mechanical heart valves. J Am Coll Cardiol 1999:33:1637-41.

- 15. Xu Z, Fan J, Luo X, et al. Anticoagulation regimens during pregnancy in patients with mechanical heart valves: a systematic review and meta-analysis, Can J Cardiol 2015 Nov 12 [E-pub ahead of print1.
- 16. Chan WS, Anand S, Ginsberg JS. Anticoagulation of pregnant women with mechanical heart valves: a systematic review of the literature. Arch Intern Med 2000;160:191-6.
- 17. Hassouna A, Allam H. Oral anticoagulation therapy during pregnancy in patients with mechanical mitral valves: a prospective study. Cardiovasc Surg 2001;9:478-81.
- 18. Cotrufo M, De Feo M, De Santo LS, et al. Risk of warfarin during pregnancy with mechanical valve prostheses. Obstet Gynecol 2002:99:35-40.
- 19. De Santo LS, Romano G, Della Corte A, et al. Mechanical aortic valve replacement in young women planning on pregnancy: maternal and fetal outcomes under low oral anticoagulation, a pilot observational study on a comprehensive preoperative counseling protocol. J Am Coll Cardiol 2012;59:1110-5.
- 20. Ashour ZA, Shawky HA, Hassan Hussein M. Outcome of pregnancy in women with mechanical valves. Tex Heart Inst J 2000:27:240-5.
- 21. Rowan JA, McCowan LM, Raudkivi PJ, et al. Enoxaparin treatment in women with mechanical heart valves during pregnancy. Am J Obstet Gynecol 2001;185:633-7.
- 22. Bates SM, Greer IA, Middeldorp S, et al. VTE, thrombophilia, antithrombotic therapy, and pregnancy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012:141:e691S-736S.
- 23. Oran B, Lee-Parritz A, Ansell J. Low molecular weight heparin for the prophylaxis of thromboembolism in women with prosthetic mechanical heart valves during pregnancy. Thromb Haemost 2004:92:747-51.
- 24. Yinon Y, Siu SC, Warshafsky C, et al. Use of low molecular weight henarin in pregnant women with mechanical heart valves. Am J Cardiol 2009;104:
- 25. Saeed CR, Frank JB, Pravin M, et al. A prospective trial showing the safety of adjusteddose enoxaparin for thromboprophylaxis of pregnant women with mechanical prosthetic heart valves. Clin Appl Thromb Hemost 2011;17:313-9.
- 26. Goland S, Schwartzenberg S, Fan J, et al. Monitoring of anti-Xa in pregnant patients with mechanical prosthetic valves receiving lowmolecular-weight heparin: peak or trough levels? J Cardiovasc Pharmacol Ther 2014;19:451-6.
- 27. Greer IA, Nelson-Piercy C. Low-molecularweight heparins for thromboprophylaxis and treatment of venous thromboembolism in pregnancy: a systematic review of safety and efficacy. Blood 2005:106:401-7.
- 28. Carmeliet P, Mackman N, Moons L, et al. Role of tissue factor in embryonic blood vessel development, Nature 1996:383:73-5.

- 29. Eikelboom JW. Connolly SJ. Brueckmann M. et al. Dabigatran versus warfarin in patients with mechanical heart valves. N Engl J Med 2013;369:
- 30. Quinn J, Von Klemperer K, Brooks R, et al. Use of high intensity adjusted dose low molecular weight heparin in women with mechanical heart valves during pregnancy: a single-center experience. Haematologica 2009;94:1608-12.
- 31. Yarrington CD, Valente AM, Economy KE. Cardiovascular management in pregnancy: antithrombotic agents and antiplatelet agents. Circulation 2015;132:1354-64.
- 32. Nagler M, Haslauer M, Wuillemin WA. Long-term anticoagulation with fondaparinux in a patient with a mechanical heart valve. Ann Hematol 2011;90:1225-6.
- **33.** Nelson-Piercy C, Greer IA. Anticoagulation with Tinzaparin for women with mechanical valves in pregnancy: a retrospective case series. Thromb Res 2013;131:185-6.
- 34. Hoeltzenbein M, Beck E, Meixner K, et al. Pregnancy outcome after exposure to the novel oral anticoagulant rivaroxaban in women at suspected risk for thromboembolic events: a case series from the German Embryotox Pharmacovigilance Centre. Clin Res Cardiol 2016;105:117-26.
- 35. Roos-Hesselink JW, Ruys TP, Stein JI, et al., for the ROPAC Investigators. Outcome of pregnancy in patients with structural or ischaemic heart disease: results of a registry of the European Society of Cardiology. Eur Heart J 2013;34:657-65.
- 36. Bortolotti U, Milano A, Mazzucco A, et al. Pregnancy in patients with a porcine valve bioprosthesis. Am J Cardiol 1982;50:1051-4.
- 37. Avila WS, Rossi EG, Grinberg M, et al. Influence of pregnancy after bioprosthetic valve replacement in young women: a prospective five-year study. J Heart Valve Dis 2002:11:864-9.
- 38. Jamieson WR. Miller DC. Akins CW. et al. Pregnancy and bioprostheses: influence on structural valve deterioration. Ann Thorac Surg 1995; 60:S282-6; discussion S287.
- 39. Butchart EG, Payne N, Li HH, et al. Better anticoagulation control improves survival after valve replacement. J Thorac Cardiovasc Surg 2002:123:715-23.
- 40. Elkayam U, Goland S. The search for a safe and effective anticoagulation regimen in pregnant women with mechanical prosthetic heart valves. J Am Coll Cardiol 2012:59:1116-8.
- 41. Berresheim M, Wilkie J, Nerenberg KA, et al. A case series of LMWH use in pregnancy: should trough anti-Xa levels guide dosing? Thromb Res 2014;134:1234-40.
- 42. Patel JP, Green B, Patel RK, et al. Population pharmacokinetics of enoxaparin during the antenatal period. Circulation 2013:128:1462-9.
- 43. Davison JM, Noble MC. Serial changes in 24 hour creatinine clearance during normal menstrual cycles and the first trimester of pregnancy. Br J Obstet Gynaecol 1981;88:10-7.

Anticoagulation During Pregnancy

- **44.** Anderson GD. Pregnancy-induced changes in pharmacokinetics: a mechanistic-based approach. Clin Pharmacokinet 2005;44:989-1008.
- **45.** Friedrich E, Hameed AB. Fluctuations in antifactor Xa levels with therapeutic enoxaparin anticoagulation in pregnancy. J Perinatol 2010;30: 253-7
- **46.** Adatya S, Uriel N, Yarmohammadi H, et al. Anti-factor Xa and activated partial thromboplastin time measurements for heparin monitoring in mechanical circulatory support. J Am Coll Cardiol HF 2015;3:314–22.
- **47.** Carroll RC, Craft RM, Whitaker GL, et al. Thrombelastography monitoring of resistance to enoxaparin anticoagulation in thrombophilic pregnancy patients. Thromb Res 2007;120: 367-70
- **48.** Basude S, Hein C, Curtis SL, et al. Low-molecular-weight heparin or warfarin for anti-coagulation in pregnant women with mechanical heart valves: what are the risks? A retrospective observational study. BJOG 2012;119:1008-13; discussion 1012-3.
- **49.** De Santis M, De Luca C, Mappa I, et al. Clopidogrel treatment during pregnancy: a case report and a review of literature. Intern Med 2011; 50:1769–73.
- **50.** Santiago-Díaz P, Arrebola-Moreno AL, Ramírez-Hernández JA, et al. Platelet antiaggregants in pregnancy. Rev Esp Cardiol 2009;62:1197-8.
- **51.** Beyer-Westendorf J, Marten S, Michalski F. Outcome of NOAC exposure during pregnancy

- (... and the problem of event reporting...) (abstr). Blood 2015;126:1125.
- **52.** Liu S, Liston RM, Joseph K, et al., for the Maternal Health Study Group of the Canadian Perinatal Surveillance System. Maternal mortality and severe morbidity associated with low-risk planned cesarean delivery versus planned vaginal delivery at term. CMAJ 2007;176:455-60.
- **53.** Nagler M, Haslauer M, Wuillemin WA. Fondaparinux-data on efficacy and safety in special situations. Thromb Res 2012:129:407-17.
- **54.** Gerhardt A, Zotz RB, Stockschlaeder M, et al. Fondaparinux is an effective alternative anticoagulant in pregnant women with high risk of venous thromboembolism and intolerance to low-molecular-weight heparins and heparinoids. Thromb Haemost 2007;97:496-7.
- **55.** Fareed J, Hoppensteadt D, Schultz C, et al. Biochemical and pharmacologic heterogeneity in low molecular weight heparins. Impact on the therapeutic profile. Curr Pharm Des 2004;10: 983_90
- **56.** Xu Y, Cai C, Chandarajoti K, et al. Homogeneous low-molecular-weight heparins with reversible anti-coagulant activity. Nat Chem Biol 2014;10:248-50.
- **57.** Bapat P, Kedar R, Lubetsky A, et al. Transfer of dabigatran and dabigatran etexilate mesylate across the dually perfused human placenta. Obstet Gynecol 2014;123:1256-61.
- **58.** Eliquis (apixaban) tablets, for oral use (package label). Princeton, NJ: Bristol-Meyers Squibb, 2012.

- **59.** Xarelto (rivaroxaban) tablets, for oral use (package label). Titusville, NJ: Janssen Pharmaceuticals, Inc., 2011.
- **60.** Savaysa (edoxaban) tablets, for oral use (package label). Parsippany, NJ: Daiichi Sankyo, Inc., 2015.
- **61.** Bando K, Kobayashi J, Hirata M, et al. Early and late stroke after mitral valve replacement with a mechanical prosthesis: risk factor analysis of a 24-year experience. J Thorac Cardiovasc Surg 2003;126:358-64.
- **62.** Renzulli A, De Luca L, Caruso A, et al. Acute thrombosis of prosthetic valves: a multivariate analysis of the risk factors for a lifethreatening event. Eur J Cardiothorac Surg 1992;6:412–20; discussion 421.
- **63.** Bourguignon T, Bergöend E, Mirza A, et al. Risk factors for valve-related complications after mechanical heart valve replacement in 505 patients with long-term follow up. J Heart Valve Dis 2011;20:673–80.
- **64.** Goland S, Elkayam U. Anticoagulation in pregnancy. Cardiol Clin 2012;30:395-405.

KEY WORDS factor Xa inhibitors, heart disease, heart valves, heparin, thrombosis, venous thromboembolism

APPENDIX For supplemental tables, please see the online version of this document.