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INTRODUCTION
Machine learning (ML) is a revolution in computer 
science and is set to change the face of cardiology 
practice. In ML, humans no longer need to convert 
an understanding of a problem into a stepwise algo-
rithmic solution; instead, the computer learns to 
solve a task for itself.

While ML can seem intimidating, the under-
lying principles build on familiar and established 
techniques. The recent revolution that made ML 
so effective, however, was the recognition that 
numerous sequential layers of simple arithmetic, 
termed neural networks, become surprisingly 
effective at solving difficult problems. This ‘deep 
learning’ has been startlingly effective across a 
variety of problems, and a particular type, the 
convolutional neural network (CNN) has revolu-
tionised image analysis.

CNNs are inspired by the human visual cortex and 
have been used successfully in cardiology to process 
data that are one-dimensional (1D) (ECGs, pressure 
waveforms), two-dimensional (2D) (X-rays, MRIs) 
and three-dimensional (3D) (echocardiography 
videos, cardiac magnetic resonance cine videos and 
CT volumes). We are now entering the stage where 
these CNNs’ performances are starting to equal 
that of cardiologists in some domains.1 2

In this review, we will cover the basics of ML, 
before explaining the workings of neural networks, 
and particularly CNNs. ML will play an increasing 
role in medical practice and, as with any diagnostic 
test or piece of medical equipment, an under-
standing of these systems will better equip medical 
staff to interpret these systems’ results.

ML AT ITS MOST SIMPLE
The first chapter in an ML textbook is often 
made up of topics that a decade ago would have 
been called ‘statistics’. A simple example that we 
commonly encounter in cardiology is the formula 
for predicting a patient’s maximum heart rate 
during exercise: ‘220–age’. This formula arises 
from simple linear regression:

predicted maximum heart rate=constant–
(another constant×age)

Originally, pairs of ages and heart rates were used 
to find the best values for these two constants. These 
were then rounded to 220 and 1, respectively.

As cardiologists we frequently encounter exam-
ples that are one step more complex, in the form of 
risk scores. In these, we no longer predict a measure-
ment, but a probability of an event (eg, whether the 
patient will live or die in the next 6 months in the 
case of the GRACE score). In figure 1, we show an 
illustration (using simulated data) of the risk model 

of age and cholesterol predicting 10-year mortality. 
This has several interesting features. First, it is 
curved, because it must be; at age 40 years the 
risk of death is so low that even big differences in 
cholesterol result in only a small increase in death. 
At the other extreme, a 90-year-old patient’s 10 
risk of death is so high that their cholesterol has 
little bearing on it. It is for patients in the middle 
zone that cholesterol has the highest influence on 
mortality.

These familiar practices in clinical cardiology are 
at the simple end of the same spectrum of ML. We 
can start with a dataset of inputs (eg, age) and the 
corresponding outputs (maximum heart rate), and 
we are familiar with a computer calculating the 
line of best fit between them, which we call linear 
regression. This can be extended to outputs that 
are probabilities (eg, death), which we term logistic 
regression.

SUPERVISED AND UNSUPERVISED LEARNING
For a computer to fit one of these regression 
models for us, we must supply it with example pairs 
comprising the input (eg, age) and the output we 
are trying to predict (eg, maximum heart rate). This 
process is termed ‘supervised learning’, because the 
data we are providing include the correct answers.

There is another type of task that ML can 
perform, called ‘unsupervised learning’, where 
there is no specific true answer, but instead we ask 
the computer to discover patterns in the data. For 
example, it could be finding phenotypic variants 
within a large group of patients who superficially 
appear to have one condition.3

Both supervised and unsupervised learning have 
undergone a revolution in recent years, for two 
reasons. First, algorithms have been developed to 
tune even models that are millions of times more 
complex than conventional regression models.4 
Second, computers have become fast enough to 
perform the tuning steps which are vastly increased 
not only in number but also in subtlety (because 
the interactions between the different elements are 
unimaginably more numerous).5

Learning objectives

	⇒ Understand the paradigm of machine learning.
	⇒ Understand the differences between supervised 
and unsupervised learning.

	⇒ Understand the design principles behind 
convolutional neural networks, and why they 
excel at medical image analysis.
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NEURAL NETWORKS
Neural networks are assembled in layers in a similar 
manner to the animal brain.6 Each layer comprises 
‘neurons’, which, like biological neurons, receive 
inputs from other neurons and combine these inputs 
in some way. Just as a biological neuron’s output is 
its frequency of firing, these computational neurons 
output a number.

In a sense, a conventional statistical regression 
model can be reimagined as a neural network 
(figure  2), where the inputs are connected to the 
output via stimulatory or inhibitory synapses. The 
output value could be interpreted as a value like a 
maximum heart rate, or a probability, for example, 
of death.

Neural networks however can be more compli-
cated by adding extra ‘hidden layers’ of neurons 
between the input and the outputs, allowing us 
to model more complex relationships than simple 
straight-line dependencies (eg, heart rate=220–
age). While each intermediate step may be simple 
(such as addition or multiplication), by combining 
several one after the other, the network can produce 
surprisingly sophisticated processing.

In the neural network depicted in the right panel 
of figure 2, there are two hidden layers. Each neuron 
in the first hidden layer receives only the raw data 
and can therefore only compute simple linear 
functions of them, such as 220–age, or (haemo-
globin×7)+(troponin÷42). In the second layer, 
however, each neuron has access to the outputs 
of the first layer, and therefore can compute more 
complex relationships by combining them. Modern 
neural networks can have dozens of layers.

We store the strength of each of the synapses in 
a network as a number, which we term a ‘weight’. 
A positive weight can be thought of as a stimula-
tory synapse, and a negative weight as an inhibitory 
synapse. By modelling the network this way, we can 
perform a series of three simple arithmetic opera-
tions (one for each ‘layer’ of the network) to trans-
late the five input numbers into an output number.

When we first create one of these networks, the 
weights are selected randomly, and so the initial 
outputs are meaningless. However, we then go 
through the process of ‘training’. During training 
we repeatedly show the network examples of the 
data, along with the correct answers (supervised 
learning). We then compare the network’s output 
with the correct answer, and adjust the weights 
in a way that would have yielded a better (more 
correct) output. Through this process, the network 
eventually ‘learns’ the best way of processing the 
input data.

At first it seems spectacularly unlikely that an 
automated process could make millions of small 
adjustments that result in a meaningful neural 
network evolving. However, that was the stunning 
insight behind ‘gradient descent’, the mathematical 
process of adjusting these weights.4

ADVANTAGES OF NEURAL NETWORKS OVER 
CLASSIC REGRESSION
In the above example, it might not be clear why 
an approach using a neural network is any more 
advantageous than fitting a regression model where 
we try to predict the odds of dying. In fact, if we just 
connected the input neurons directly to the output 
neurons with adjustable weights (ie, had no hidden 
layers), our approach would be identical to regres-
sion. However, the inclusion of the hidden layers 
allows the neural network to perform ‘deeper’ 
processing of the data, in two specific ways:

	► The network can create complex non-linearity 
by assembling a pipeline of interconnected 
neurons.

	► Signals from different sources can interact at 
multiple stages.

Although these two features seem simple, 
their combination is extraordinarily powerful, as 
explained below.

ORIGIN AND UTILITY OF NON-LINEARITY
After each neuron, and before the next, we use a 
use a simple mathematical function to transform 
the result. A simple function termed the ‘rectified 
linear unit’ (ReLU) is surprisingly effective,7 though 
there exist many alternatives such as the ‘sigmoid’ 
function. ReLU merely changes negative numbers 
to 0, while letting positive numbers pass through 
unaffected (figure  3, left panel). The reason why 
we need such functions may not be immediately 
apparent—indeed, we could theoretically just attach 
the neurons together without activation functions 
in between them. However, it is these non-linear 
functions, like ReLU, that allow the neurons to 
make ‘decisions’, effectively acting like filters that 

Figure 1  The relationship between age, cholesterol and mortality (probability of 
death) using simulated data.
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cause the neurons to behave differently in different 
settings. And so, when these neurons and their asso-
ciated ReLUs are cascaded in large numbers over 
many layers, they can effectively emulate many 
complex mathematical functions.

For example, by combining just two neurons in a 
layer between an input and an output, with a ReLU 
immediately following each neuron, we can mimic 
complex functions such as converting a number 
to its absolute value (removing any negative signs; 
figure 3, right panel, yellow graph) or approximate 
something close to a sigmoid function (figure  3, 
right panel, blue graph).

MORE LAYERS ALLOW INPUTS TO BE COMBINED 
AT DIFFERENT LEVELS
In conventional algebra, a function z can depend 
on x and y in various ways. There is a family of 
relationships within which x and y do not interact, 
namely, z(x, y)=f(x)+g(y). In other words, x and y 
are processed separately and the results are added 
at the end. An example of this is the Glasgow Coma 
Scale, where the responses of the eyes, motor system 
and voice are assessed separately and summed.

There is another family of relationships in which 
x and y are combined by an initial linear function, 
and then acted on by a non-linear function. For 

Figure 2  The left panel shows the simplest form of neural network, with five input neurons, corresponding to five input variables, which feed 
into one output neuron, corresponding to the chance of death. The input neurons either increase (age, C reactive protein, creatinine) or decrease 
(haemoglobin, ejection fraction) the activity of the output neuron, whose final value can be measured to provide a probability. The connections 
(weights) between the input neurons and the output neuron are adjusted to give the most accurate answer. The right panel shows a neural network 
with two 'hidden' layers. This provides extra processing power, because intermediate calculations can be processed further in a non-linear manner.

Figure 3  . The left panel shows the rectified linear unit (ReLU) activation function. Values below 0 are set to 0; positive values are unchanged. 
The right panel shows a schematic of a simple neural network with two hidden units between an input and output neuron. The hidden units each 
comprise a neuron and a ReLU. These take a maximum of 0 and a certain value, depicted as ‘max(0, <value>)’. With just two neurons, we can create 
a small network which calculates the absolute value of an input value (yellow graph), or something which approximates a sigmoid function (blue 
graph).
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example, calculation of body mass index (BMI) 
from imperial units:

	

‍BMI (stones, pounds, feet, inches) = (stones14+pounds)0.453
((feet12+inches)0.025)2 ‍�

Note that in this formula, the stone and pounds 
interact together linearly, and the feet and inches 
interact together linearly. The two results then 
interact non-linearly, and there are no other inter-
actions. This process could only be modelled using 
multiple layers.

The family of functions we can model with 
numerous layers is vastly richer than the above, and 
high performing ‘deep learning’ networks typically 
have dozens of layers.

SIMPLE NEURAL NETWORK IN CARDIOLOGY, 
AND THEIR LIMITATIONS
While simple neural networks like those above have 
been used in multiple settings in cardiology,8 9 they 
have not been adopted as substantially as some 
other network designs, especially in the field of 
automated medical image processing.

A major reason for their limited application is 
their poor ‘scaling’; as the number of inputs into 
the network increases, the number of weights the 
network must store increases dramatically. One 
high profile paper used a neural network with 
48 layers to process images of skin lesions and 
showed dermatologist-level performance in iden-
tifying cancers.10 The images they fed into their 

Figure 4  A schematic of a two-layer neural network designed to identify whether an image is of a nought or a cross. In the top row, we can see the 
image of the nought contains areas which match each of the four kernels in the convolutional layer. The cross image (bottom row), however, does not 
contain any features that match the vertical or horizontal kernels. The fully connected layer allows the strength of these detections to be translated 
into predictions; the weights connecting the vertical and horizontal kernel matches to the ‘nought’ prediction are stimulatory, but they are inhibitory 
for the ‘cross’ class.
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neural network were 299 pixels tall, and 299 pixels 
wide, meaning 59 800 pixels total. To feed such an 
image into a neural network like those above, we 
would therefore need 59 800 input neurons. Just to 
connect this layer to the first hidden layer of 100 
neurons would require almost 6 million weights, 
requiring large amounts of training data and time.

Furthermore, if that picture is shifted right-
wards by one pixel, the inputs to every neuron in 
the network will change, and the network will no 
longer be able to recognise the image.

CONVOLUTIONAL NEURAL NETWORKS
The insight that catapulted deep learning into 
the forefront of image analysis was that the 
same visual feature might appear in any one 
of hundreds of positions on a large image, and 
should ideally be recognisable by the network, 
regardless of the position. To achieve this, why 
not have the neural network view small parts of 
the image in turn? That way, the network learns 
to recognise important features, rather than 
their arbitrary positions.

This is efficient, because, even if the image is 
tens of thousands of pixels in size, a network 
could be set to view many areas, each of which 
is much smaller, thereby needing many fewer 
weights.

It was this approach that the skin lesion study 
authors successfully used: the convolutional neural 
network (CNN).6

INSPIRATION FROM THE MAMMALIAN BRAIN
In the 1960s, Hubel and Wiesel found specific 
cells in the first layer of a cat’s visual cortex which 
depolarised when the cat was viewing bright lines 
of a certain orientation.11 Other neighbouring cells 
depolarised when lines of different orientations 
were present. Damage to these fundamental cortical 
layers leads to complete blindness. However, 
damage to deeper occipital lobe structures can lead 
to specific defects in higher level image processing, 
such as prosopagnosia (the inability to recognise 
faces).12

These findings demonstrate the fundamental 
workings of both the mammalian visual system 
and CNNs: the identification of an object involves 
earlier layers identifying the basic visual features 
present, and later (deeper) layers combining these 
features to make a final decision.

CNNS LEARN BY MATCHING TEMPLATES
The way CNNs work is simple: template matching. 
While classic neural networks learn how to process 
data from individual pixels, CNNs instead slide 
(or ‘convolve’) a series of small templates, termed 

Figure 5  A schematic of a neural network used to identify echocardiographic views. Early convolutional layers in this network identify basic 
features such as edges, while later layers combine these features to identify anatomical structures. The presence or absence of these structures leads 
to a final prediction by the network.
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‘kernels’, through an image and record how well 
each area matches.

Figure 4 shows an example of CNN which aims 
to identify whether an image is a nought or a cross. 
It comprises only two layers, though, in practice, 
CNNs have many more.

In the first layer, the example network is a 
‘convolutional layer’ which includes four small 
templates, termed ‘kernels’. Each kernel is simply a 
small grid of numbers containing a range of values. 
In figure 4, we can see four different 3×3 kernels, 
with white and dark squares inside them, corre-
sponding to high and low values, respectively. The 
examples show a vertical line kernel, a horizontal 
line kernel and two diagonal line kernels.

When we feed an image into the network in 
figure 4, the images enter the convolutional layer. 
Then, each kernel in that layer slides, or ‘convolves’, 
through the image and records how well each area 
matches. Through each kernel, therefore, a new 
image is created, termed a ‘feature map’, which 
indicates how strongly each area of the original 
image matches that specific kernel.

When we feed an image of a handwritten circle 
(nought) into the convolutional layer (figure 4, top 
row), there are different areas of the image which 
match each specific kernel; for example, the sides of 
the circle match the vertical kernel, whereas the top 
matches the horizontal kernel.

However, when we pass an image of a hand-
written cross into the convolutional layer (figure 4, 
bottom row), we find a different pattern: we find 
no matches for either the horizontal or vertical 
kernels (the feature maps are empty), but very 
strong matches for the diagonal kernels.

The second layer in the example network is the 
‘fully connected’ layer. This layer is fundamentally 
identical to the hidden layers in the simple neural 
networks discussed previously (figure 2), in that it 
is merely a layer where every neuron in the layer 
before (the convolutional layer) is connected to 
every neuron in the layer following (the output 
neurons). The fully connected layer therefore 
takes the results of the final convolutional layer in 
a network and translates this into a prediction. In 
our example, an image containing many matches 

Figure 6  CNNs can be used for classification, regression and segmentation problems. Classification problems may involve deciding which class 
an image corresponds to (left panel). Regression tasks involve predicting one or more continuous values from an image, which could be used, for 
example, to predict cavity volumes. In segmentation tasks, the neural network may classify each pixel within an image as one of several classes (right 
panel). CNNs, convolutional neural networks; LV, left ventricle; LVEDV, left ventricular end diastolic volume; RV, right ventricle; RVEDV, right ventricular 
end diastolic volume.
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from all four kernels is likely to be a nought. In 
contrast, an image containing only matches for the 
diagonal kernels is likely to be a cross. This has been 
‘learnt’ by the network by adjusting the weights of 
the synapses between the vertical and horizontal 
kernels to be inhibitors for the cross class and stim-
ulating for the nought class.

In practice, CNNs typically include multiple 
convolutional layers, with deeper layers convolving 
kernels through the feature maps produced by 
the preceding layers to identify more and more 
complex images. For example, a CNN trained to 
identify echocardiogram views will use its early 
layers to identify relatively simple features within 
an image (figure  5). Later layers combine these 
observed features to identify anatomical features 
which the neural network can use to decide which 
echocardiogram view is shown.

During training, the CNN will learn the optimal 
weights in the fully connected layer, but impor-
tantly it also learns the optimal kernels in the 
convolutional layers. This means that these small 
templates are not programmed manually, but rather 
naturally develop during the training process. This 
again is analogous to the mammalian brain; Hubel 
and Wiesel found that kittens which are raised in 
a world consisting of either solely vertical lines or 
solely horizontal lines end up being completely 

blind to objects of the opposite orientation when 
they are introduced into the real world,13 presum-
ably because they had not developed systems for 
recognising them.

ADVANTAGES OF CNNS OVER CLASSIC NEURAL 
NETWORKS
In the above example, the advantages of CNNs 
may not be clear. For example, the image could 
have merely been fed into a classic neural network, 
like that in figure 2. However, CNNs offer several 
advantages:
1.	 CNNs are efficient. In our above example, if we 

store each kernel as nine numbers (a 3×3 grid), 
the entire convolutional layer can be represent-
ed using 4×9=36 weights. We then require just 
eight further weights to connect each of these 
four kernels to the two output classes, making 
a total of 44 weights. In contrast, if we used a 
single-layer classic neural network as a network 
to process low resolution images of 28×28 pix-
els, we would need 28×28×2=1568 weights. 
Generally, networks which can perform a task 
with fewer weights can be trained more quickly 
and with less data.

2.	 CNNs are (relatively) ‘spatially invariant’. In 
our CNN example, we would expect the neural 

Table 1  Examples of the successful application of neural networks, with classification, segmentation and regression examples using different 
neural network architectures from across different fields within cardiology

Task Type of problem Type of network(s)

ECG

Accessory pathway localisation Classification Classic neural network8

Arrhythmia detection and classification Classification 1D CNN2

ECG segmentation Segmentation 1D CNN26

Echocardiography

Cardiomyopathy diagnosis from images Classification 2D CNN19

View classification from videos Classification 3D CNN27

Image quality assessment Regression 2D CNN28

Left ventricular volume and ejection fraction calculation Regression CN CNN18

Echo chamber segmentation Segmentation 2D CNN19

Cardiac MRI

Diagnosis of hypertrophic cardiomyopathy Classification 3D CNN29

Left ventricular segmentation Segmentation 2D CNN1

Whole heart segmentation Segmentation 2D CNN30

Cardiac CT

Carotid artery bifurcation detection Classification Classic neural network9

Agatson score calculation Regression 3D CNN31

Epicardial adipose tissue quantification Segmentation 2D CNN20

Coronary calcium quantification Segmentation 2D CNN21

X-ray

Diagnoses form chest X-rays Classification 2D CNN14

Pacemaker model identification Classification 2D CNN22

BNP estimation from chest X-ray Regression 2D CNN32

Other

Identification of pressure damping in coronary 
angiography

Classification 1D CNN15

Identifying obstructive coronary artery disease in MPS Classification 2D CNN33

Identifying heart failure from cardiac biopsy Classification 2D CNN34

BNP, B-type natriuretic peptide; CNN, convolutional neural network; 1D, one-dimensional; 2D, two-dimensional; 3D, three-dimensional; MPS, myocardial perfusion scan.

copyright.
 on M

ay 25, 2022 at Inst A
ragones de C

iencias de la S
alude. P

rotected by
http://heart.bm

j.com
/

H
eart: first published as 10.1136/heartjnl-2020-318686 on 23 July 2021. D

ow
nloaded from

 

http://heart.bmj.com/


980 Howard JP, Francis DP. Heart 2022;108:973–981. doi:10.1136/heartjnl-2020-318686

Education in Heart

network to work even if the size of the nought 
or cross in the image changed; a cross confined 
to the left half of the image would still show 
strong matches for the diagonal kernels and lit-
tle matches for the vertical and horizontal ker-
nels.

3.	 A CNN trained for one task is a good starting 
point for beginning training for another task. 
The early layers of a CNN trained to perform 
one task can be reused in other tasks, skipping 
the need to relearn the optimal kernels. This 
dramatically reduces training time and the 
amount of data required.10 14

CNNS BEYOND IMAGES
Because the CNNs above deal with 2D images 
by sliding kernels across them in two dimensions 
(across the width and height of the image), we 
term them 2D CNNs. However, 1D and 3D CNNs 
also exist and have shown great promise in anal-
ysis of non-image data. The 1D CNNs analyse 1D 
data, which are very frequent in cardiology, and 
include electrocardiograms2 and coronary pressure 
measurements.15 The 3D CNNs analyse 3D data, 
such as volumetric CT data or videos.16

CNNS BEYOND CLASSIFICATION
We have seen how neural networks can be used 
in classification tasks, such as deciding whether a 
patient will die, whether an image is a nought or 
a cross, or what view is depicted in a cardiac MRI 
scan (figure  6, left panel). However, CNNs can 
be used for other tasks, including regression and 
segmentation tasks.

In a regression task, the output of a neural 
network is not a predicted class, but instead a 
continuous number, for example, predicting the 
percentage of emphysema from CT scans.17 One 

group has successfully used regression CNNs to 
predict end systolic volumes, diastolic volumes and 
ejection fractions from over 2.6 million echocardio-
graphic images.18

In a segmentation task, we want the neural 
network to provide us with an output image where 
each pixel is classified by what it contains. For 
example, a neural network might be trained to iden-
tify which pixels in an image correspond to the left 
and right ventricular cavities (figure 6, right panel). 
The use of CNNs for medical image segmentation 
is exceptionally popular and powerful, because by 
simply measuring the segmented regions, we can 
easily derive computer-generated measurements, 
for example, of chamber dimensions.19 This process 
can be applied to 3D volumetric data, allowing the 
quantification of epicardial adipose tissue20 and 
coronary calcium on even non-gated CT scans,21 
with evidence that such systems prove useful in 
cardiac risk prediction.

CONVOLUTIONAL NETWORKS IN CARDIOLOGY
Table  1 shows successful examples of neural 
networks across five different fields within cardi-
ology, in a variety of problems involving classifica-
tion, regression and segmentation. In many of these 
tasks, the performance of these systems is beginning 
to equal that of clinicians,1 22 and they are now 
beginning to transition from ‘bench to bedside’ and 
be used at the point of care.23

OVERFITTING AND APPRAISING NEURAL 
NETWORKS
When we train a neural network, we hope it is 
learning things that will allow it to work well on 
new examples, rather than merely ‘memorising’ 
each example in its training dataset. This unhelpful 
memorising of examples is termed ‘overfitting’. We 
try to minimise overfitting through several tech-
niques. A simple one is to use a very large quantity 
of training data, which (1) makes it more difficult 
for the network to remember them all, and (2) 
means any real-world data are more likely to be 
similar to an example it has seen before. Indeed, 
this is the reason why neural networks are noto-
rious for requiring lots of training data—it is not 
because they are large quantities to learn from, but 
rather they need large quantities to not overfit. It 
is also the reason why the training data must be 
of high quality—even the occasional mistake will 
be learnt by the network, and can adversely affect 
subsequent performance to a remarkable extent.24

Because of overfitting, it is very important that 
we keep data aside that we never train the neural 
network on, so we can see how well it generalises 
to these new examples. Indeed, it is best practice 
to hold two sets of the data back from training: 
one which we can use to continually appraise the 
network’s progress during the development stages, 
and a separate ‘hold out’ set which we use to report 
the final performance. These two datasets are called 
the validation and the testing datasets, although 

Key messages

	⇒ Machine learning covers a wide range of methods where a computer learns 
to solve a task using example data.

	⇒ The simplest algorithms use standard statistical methods, such as regression.
	⇒ Neural networks comprise layers of simple elements turned neurons, but 
have remarkable processing power.

	⇒ Convolutional neural networks (CNNs) are inspired by the mammalian visual 
cortex, and excel at processing image data.

	⇒ CNNs are now state of the art in many medical imaging tasks involving 
classification, regression and segmentation problems.
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which way around they are named is surprisingly, 
and frustratingly, variable.25

CONCLUSIONS
Cardiologists will see ML playing important role in 
their practice in the coming decade. ML can often be 
viewed as a logical extension of surprisingly simple 
statistical techniques. Neural networks themselves 
are made up of remarkably simple neuronal units, 
but combining them in many layers provides excep-
tional processing power. CNNs, in particular, are 
likely to form the heart of many systems involving 
computer vision and are becoming increasingly 
integral to modern cardiac imaging. As with any 
tool, an understanding of the workings of these 
systems will better allow cardiologists to appreciate 
their roles, strengths and limitations.

Twitter James Philip Howard @DrJHoward and Darrel P Francis @
profdfrancis

Contributors  JPH and DPF conceived, drafted and revised the 
work and have given final approval for the version to the published.

Funding  JPH is supported by the Wellcome Trust (212183/Z/18/Z).

Competing interests  None declared.

Patient and public involvement  Patients and/or the public 
were not involved in the design, or conduct, or reporting, or 
dissemination plans of this research.

Patient consent for publication  Not required.

Provenance and peer review  Commissioned; externally peer 
reviewed.

Author note  References which include a * are considered to be 
key references.

ORCID iD
James Philip Howard http://orcid.org/0000-0002-9989-6331

REFERENCES
	 1	 Bhuva A, Bai W, Lau C, et al. A multicenter, Scan-Rescan, human 

and machine learning CMR study to test generalizability and 
precision in imaging biomarker analysis. Circ Cardiovasc Imaging 
2019;12:e009214.

	 2	 Hannun AY, Rajpurkar P, Haghpanahi M, et al. Cardiologist-
level arrhythmia detection and classification in ambulatory 
electrocardiograms using a deep neural network. Nat Med 
2019;25:65–9.

	 3	 Ahmad T, Lund LH, Rao P, et al. Machine learning methods 
improve prognostication, identify clinically distinct phenotypes, 
and detect heterogeneity in response to therapy in a large cohort 
of heart failure patients. J Am Heart Assoc 2018;7:e008081.

	 4	 Ruder S. An overview of gradient descent optimization algorithms. 
Available: http://arxiv.org/abs/1609.04747 [Accessed 20 Aug 
2020].

	 5	 Dally B. Efficient methods and hardware for deep learning 2017.
	 6	 Lecun Y, Bottou L, Bengio Y. LeNet. Proc IEEE 1998.
	 7	 InNair V, Hinton GE. Rectified linear units improve restricted 

Boltzmann machines. ICML 2010 - Proceedings, 27th International 
Conference on Machine Learning, 2010.

	 8	 Huang D, Yamauchi K, Inden Y, et al. Use of an artificial neural 
network to localize accessory pathways of Wolff-Parkinson-White 
syndrome with 12-lead electrocardiogram. Med Inform Internet 
Med 2005;30:277–86.

	 9	 Zheng Y, Liu D, Georgescu B. 3D deep learning for efficient and 
robust landmark detection in volumetric data. Cham: Springer, 
2015: 565–72.

	 10	 Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level 
classification of skin cancer with deep neural networks. Nature 
2017;542:115–8.

	 11	 Hubel DH, Wiesel TN. Shape and arrangement of columns in cat’s 
striate cortex. J Physiol 1963;165:559–68.

	*12	 Schiltz C, Sorger B, Caldara R, et al. Impaired face discrimination 
in acquired prosopagnosia is associated with abnormal response 
to individual faces in the right middle fusiform gyrus. Cereb Cortex 
2006;16:574–86.

	*13	 HUBEL DH, WIESEL TN. Receptive fields of cells in striate cortex 
of very young, visually INEXPERIENCED kittens. J Neurophysiol 
1963;26:994–1002.

	 14	 Rajpurkar P, Irvin J, Zhu K. CheXNet: Radiologist-Level pneumonia 
detection on chest x-rays with deep learning, 2017. Available: 
https://arxiv.org/pdf/1711.05225.pdf [Accessed 27 Jun 2018].

	 15	 Howard JP, Cook CM, van de Hoef TP, et al. Artificial Intelligence 
for Aortic Pressure Waveform Analysis During Coronary 
Angiography: Machine Learning for Patient Safety. JACC 
Cardiovasc Interv 2019;12:2093–101.

	 16	 Tran D, Bourdev L, Fergus R. Learning spatiotemporal features with 
3D Convolutional networks. Available: https://arxiv.org/pdf/1412.​
0767.pdf [Accessed 24 Apr 2019].

	*17	 Gonzalez Serrano G, Washko GR, San José Estépar R. Deep 
learning for biomarker regression: application to osteoporosis and 
emphysema on chest CT scans. In: Angelini ED, Landman BA, eds. 
Medical imaging 2018: image processing. 52. SPIE-Intl Soc Optical 
Eng, 2018.

	*18	 Ghorbani A, Ouyang D, Abid A, et al. Deep learning interpretation 
of echocardiograms. NPJ Digit Med 2020;3:10.

	*19	 Zhang J, Gajjala S, Agrawal P, et al. Fully automated 
echocardiogram interpretation in clinical practice. Circulation 
2018;138:1623–35.

	 20	 Commandeur F, Goeller M, Razipour A, et al. Fully automated CT 
quantification of epicardial adipose tissue by deep learning: a 
multicenter study. Radiol Artif Intell 2019;1:e190045.

	 21	 Zeleznik R, Foldyna B, Eslami P, et al. Deep convolutional 
neural networks to predict cardiovascular risk from computed 
tomography. Nat Commun 2021;12:715.

	 22	 Howard JP, Fisher L, Shun-Shin MJ, et al. Cardiac rhythm device 
identification using neural networks. JACC Clin Electrophysiol 
2019;5:576–86.

	 23	 Circle Cardiovascular Imaging. Cardiac MRI and CT Software – 
Circle Cardiovascular Imaging - Deep Learning. Available: https://
www.circlecvi.com/cvi42/cardiac-mri/deep-learning/ [Accessed 29 
Nov 2020].

	 24	 Hekler A, Kather JN, Krieghoff-Henning E, et al. Effects of label 
noise on deep Learning-Based skin cancer classification. Front 
Med 2020;7:177.

	 25	 Faes L, Liu X, Wagner SK, et al. A clinician’s guide to artificial 
intelligence: how to critically appraise machine learning studies. 
Transl Vis Sci Technol 2020;9:7.

	 26	 Sereda I, Alekseev S, Koneva A. Ecg segmentation by neural 
networks: errors and correction. Available: http://arxiv.org/abs/​
1812.10386 [Accessed 10 Jul 2019].

	 27	 Howard JP, Tan J, Shun-Shin MJ, et al. Improving ultrasound video 
classification: an evaluation of novel deep learning methods in 
echocardiography. J Med Artif Intell 2020;3:4.

	 28	 Abdi AH, Luong C, Tsang T. Quality assessment of 
echocardiographic cine using recurrent neural networks: feasibility 
on five standard view planes. Cham: Springer, 2017: 302–10.

	 29	 Biffi C, Oktay O, Tarroni G. Learning interpretable anatomical 
features through deep generative models: application to cardiac 
remodeling. Available: http://arxiv.org/abs/1807.06843 [Accessed 
10 Jul 2019].

	 30	 Howard JP, Zaman S, Ragavan A, et al. Automated analysis and 
detection of abnormalities in transaxial anatomical cardiovascular 
magnetic resonance images: a proof of concept study with 
potential to optimize image acquisition. Int J Cardiovasc Imaging 
2021;37:1–10.

	 31	 Cano-Espinosa C, González G, Washko GR, et al. Automated 
Agatston score computation in non-ECG gated CT scans using 
deep learning. Proc SPIE Int Soc Opt Eng 2018;10574:105742K.

	 32	 Seah JCY, Tang JSN, Kitchen A, et al. Chest radiographs in 
congestive heart failure: visualizing neural network learning. 
Radiology 2019;290:514–22.

	 33	 Betancur J, Commandeur F, Motlagh M, et al. Deep learning 
for prediction of obstructive disease from fast myocardial 
perfusion SPECT: a multicenter study. JACC Cardiovasc Imaging 
2018;11:1654–63.

	 34	 Nirschl JJ, Janowczyk A, Peyster EG, et al. A deep-learning classifier 
identifies patients with clinical heart failure using whole-slide 
images of H&E tissue. PLoS One 2018;13:e0192726.

copyright.
 on M

ay 25, 2022 at Inst A
ragones de C

iencias de la S
alude. P

rotected by
http://heart.bm

j.com
/

H
eart: first published as 10.1136/heartjnl-2020-318686 on 23 July 2021. D

ow
nloaded from

 

https://twitter.com/DrJHoward
https://twitter.com/profdfrancis
https://twitter.com/profdfrancis
http://orcid.org/0000-0002-9989-6331
http://dx.doi.org/10.1161/CIRCIMAGING.119.009214
http://dx.doi.org/10.1038/s41591-018-0268-3
http://dx.doi.org/10.1161/JAHA.117.008081
http://arxiv.org/abs/1609.04747
http://dx.doi.org/10.1080/14639230500367670
http://dx.doi.org/10.1080/14639230500367670
http://dx.doi.org/10.1038/nature21056
http://dx.doi.org/10.1113/jphysiol.1963.sp007079
http://dx.doi.org/10.1093/cercor/bhj005
http://dx.doi.org/10.1152/jn.1963.26.6.994
https://arxiv.org/pdf/1711.05225.pdf
http://dx.doi.org/10.1016/j.jcin.2019.06.036
http://dx.doi.org/10.1016/j.jcin.2019.06.036
https://arxiv.org/pdf/1412.0767.pdf
https://arxiv.org/pdf/1412.0767.pdf
http://dx.doi.org/10.1038/s41746-019-0216-8
http://dx.doi.org/10.1161/CIRCULATIONAHA.118.034338
http://dx.doi.org/10.1148/ryai.2019190045
http://dx.doi.org/10.1038/s41467-021-20966-2
http://dx.doi.org/10.1016/j.jacep.2019.02.003
https://www.circlecvi.com/cvi42/cardiac-mri/deep-learning/
https://www.circlecvi.com/cvi42/cardiac-mri/deep-learning/
http://dx.doi.org/10.3389/fmed.2020.00177
http://dx.doi.org/10.3389/fmed.2020.00177
http://dx.doi.org/10.1167/tvst.9.2.7
http://arxiv.org/abs/1812.10386
http://arxiv.org/abs/1812.10386
http://dx.doi.org/10.21037/jmai.2019.10.03
http://arxiv.org/abs/1807.06843
http://dx.doi.org/10.1007/s10554-020-02050-w
http://dx.doi.org/10.1117/12.2293681
http://dx.doi.org/10.1148/radiol.2018180887
http://dx.doi.org/10.1016/j.jcmg.2018.01.020
http://dx.doi.org/10.1371/journal.pone.0192726
http://heart.bmj.com/

	Machine learning with convolutional neural networks for clinical cardiologists
	Introduction﻿﻿
	ML at its most simple
	Supervised and unsupervised learning
	Neural networks
	Advantages of neural networks over classic regression
	Origin and utility of non-linearity
	More layers allow inputs to be combined at different levels
	Simple neural network in cardiology, and their limitations
	Convolutional neural networks
	Inspiration from the mammalian brain
	CNNs learn by matching templates
	Advantages of CNNs over classic neural networks
	CNNs beyond images
	CNNs beyond classification
	Convolutional networks in cardiology
	Overfitting and appraising neural networks
	Conclusions
	References


