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Aims Facial features were associated with increased risk of coronary artery disease (CAD). We developed and validated
a deep learning algorithm for detecting CAD based on facial photos.

...................................................................................................................................................................................................
Methods
and results

We conducted a multicentre cross-sectional study of patients undergoing coronary angiography or computed tomog-
raphy angiography at nine Chinese sites to train and validate a deep convolutional neural network for the detection of
CAD (at least one >_50% stenosis) from patient facial photos. Between July 2017 and March 2019, 5796 patients from
eight sites were consecutively enrolled and randomly divided into training (90%, n= 5216) and validation (10%,
n= 580) groups for algorithm development. Between April 2019 and July 2019, 1013 patients from nine sites were
enrolled in test group for algorithm test. Sensitivity, specificity, and area under the receiver operating characteristic
curve (AUC) were calculated using radiologist diagnosis as the reference standard. Using an operating cut point with
high sensitivity, the CAD detection algorithm had sensitivity of 0.80 and specificity of 0.54 in the test group; the AUC
was 0.730 (95% confidence interval, 0.699–0.761). The AUC for the algorithm was higher than that for the Diamond–
Forrester model (0.730 vs. 0.623, P< 0.001) and the CAD consortium clinical score (0.730 vs. 0.652, P< 0.001).

...................................................................................................................................................................................................
Conclusion Our results suggested that a deep learning algorithm based on facial photos can assist in CAD detection in this

Chinese cohort. This technique may hold promise for pre-test CAD probability assessment in outpatient clinics or
CAD screening in community. Further studies to develop a clinical available tool are warranted.
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Introduction

Coronary artery disease (CAD) remains the leading cause of death
and chronic disability in cardiovascular diseases for all regions of the
world.1 Precise, practical and cost-effective tools to screen CAD are
urgently needed. Except for conventional prediction models based
on clinical risk factors,2–9 some facial features were associated with
increased risk of CAD, which might provide a potential means for dis-
ease screening.10 For instance, alopecia, grey hair, facial wrinkle, ear-
lobe crease, xanthelasmata, and arcus corneae were found to be
probably associated with increased risk of CAD and poor cardiovas-
cular health.11–13 Further studies demonstrated that these facial fea-
tures may have a fair performance in identifying CAD or improve the
performance of traditional prediction model.10,14

However, use of such facial features for CAD screening has been
limited by the (i) few categories and low prevalence of facial features,
(ii) lack of specific definitions and quantifiable severity grading, and
(iii) poor reproducibility in human identification.10,11,15 A tool to inte-
grate all facial features associated with CAD for disease screening is
therefore warranted. As artificial intelligence has evolved, the deep
learning algorithm has become a promising tool for disease diagnosis
and prediction based on facial photos, especially for genetic and
endocrine diseases.16,17

Thus, we hypothesized that this novel approach may help to inte-
grate facial features for detecting CAD. And this study aimed to de-
velop and validate a deep learning algorithm to detect CAD using
facial photos.

Methods

Study design
We conducted a multicentre cross-sectional study. Data were obtained
from two studies at nine sites in China (ClinicalTrials.gov identifiers
NCT03214783 and NCT03731936). This study was approved by the in-
stitutional review boards of all the nine participating centres.

Participants
Patients undergoing elective coronary angiography or coronary com-
puted tomography angiography (cCTA) were eligible for study inclusion.
Exclusion criteria included the following: (i) prior percutaneous coronary
intervention (PCI); (ii) prior coronary artery bypass graft (CABG); (iii)
other heart diseases (e.g. congenital heart disease, valvular heart disease,
or macrovascular disease); (iv) no blood biochemistry tests during the
last 3 months; (v) artificial facial alteration (e.g. cosmetic surgery or facial
trauma); and (vi) unable to be photographed. All eligible patients pro-
vided informed consent for participating the study and having their
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photos used in research prior to the coronary angiography or cCTA
procedure.

Study setting
The study was conducted in two phases. In phase one, eligible patients
from eight sites were enrolled and partitioned randomly into training
(90%) and validation (10%) groups for algorithm development. In phase
two, eligible patients from nine sites were enrolled in a test group.
Among these nine sites in phase two, eight also participated in phase one.

Data collection
Trained research nurses interviewed and photographed patients before
the procedures. The baseline interviews collected data on socioeco-
nomic status, lifestyle (alcohol, meat, fast food intake, and sports), clinical
presentation, and family history and medications. Frontal, 60� profile, and
head top views of each patient were photographed according to a stand-
ardized protocol using a digital camera (more than 20 million pixels)
(Supplementary material online, Method S1). Medical records were
abstracted after the procedure to obtain information on demographic
characteristics, medical history, risk factors, and laboratory tests.

Labelling and facial photo pre-processing
All enrolled patients were dichotomized according to the presence of
CAD, which was defined as at least one coronary lesion stenosis >_50%
based on coronary angiography or cCTA.3,5–8 Two radiologists who
were blinded to the study design independently reviewed each patient’s
angiogram or cCTA to assess the degree of coronary artery stenosis,
with any disputes settled via review by a third radiologist for consensus
decision. Coronary artery disease was further graded as one vessel, two
vessels, three vessels, or left main disease according to the number and
location of coronary vessels with >_50% stenosis.

Facial photo quality was assessed by two investigators who were
blinded to the study design according to the protocol in Supplementary
material online, Method S2. Unqualified facial photos were excluded from
final analysis. Qualified facial photos underwent further pre-processing
using software to ensure uniformity of photo quality (Supplementary ma-
terial online, Method S2).

Development of the models
Deep convolutional neural networks were used to train an algorithm for
CAD detection (Supplementary material online, Method S3, Figure S1).
We stacked four facial photos of each patient to a 12-channel photo to
integrate all facial features. Given an integrated photo of the training set,
the model extracted the useful features and performed the CAD classifi-
cation decision. The prediction error was calculated by comparing the
output with the ground truth according to the radiologist classification,
and the parameters were adjusted accordingly to decrease the error.
This process was repeated enough times to enable the network to learn
to how to accurately assess significant CAD from facial photos. The
parameters of the algorithm were fixed according to the best perform-
ance on validation set.

We also established three other CAD detection models for perform-
ance comparison. First, we fit a logistic regression model based on 26
baseline variables identified in previous pre-test CAD prediction mod-
els,3–8 including patient demographic information, socioeconomic status,
lifestyle, medical history, risk factors, and laboratory tests
(Supplementary material online, Table S1). Second, we developed two hy-
brid models based on both facial photos and clinical variables, including
one model that blended our algorithm with the three variables in the
Diamond–Forrester model and another model that fused our algorithm

and the 26 variables in the logistic regression model (Supplementary ma-
terial online, Method S3).

Evaluating the models
To evaluate the algorithm performance, we calculated the sensitivity, spe-
cificity, area under the receiver operating characteristic curve (AUC),
positive predictive value (PPV), negative predictive value (NPV), and diag-
nostic accuracy rate using the radiologist diagnosis as the comparator.
We evaluated the algorithm at two operating points selected from the re-
ceiver operating characteristic (ROC) curve; one was selected for the
maximum sum of sensitivity and specificity and the other for high (80%)
sensitivity.

Understanding the algorithm
We conducted several analyses to better understand how CAD was
identified over many layers in the deep learning algorithm.

CAD risk factor prediction

We hypothesized that the algorithm may, in part, detect CAD by identify-
ing CAD risk factors. Thus, we trained other seven algorithms based on
facial photos to, respectively, predict seven CAD risk factors that have
been included in traditional models, including age, sex, diabetes, hyperten-
sion, hyperlipidaemia, smoking, and body mass index (BMI)
(Supplementary material online, Method S4.1).3–7,9 And we, respectively,
test the seven algorithms performance in the test group to speculate the
potential working mechanisms of the algorithm identifying CAD.

Visualization tests

Using data from the training group, we conducted two visualization tests
to identify the facial regions highlighted as important for the classification
of CAD by the algorithm (Supplementary material online, Method S4.2).
In the first test, we used automatic landmark identification software to
divide patients’ frontal facial photo into the following seven parts: bilateral
cheeks, forehead, bilateral eyes, bilateral ears, nose, mouth, and chin. We
in turn occluded each one of these parts to retrain and validate the algo-
rithm. We evaluated the contribution of the different facial areas to the
algorithm based on the decrease in algorithm performance after the oc-
clusion (Supplementary material online, Figure S2A).

In the second visualization test, we in turn occluded smaller areas
(11� 11 pixels) from all the facial photos. The impact of the occlusion on
the algorithm was used to output a heatmap of each photo, which more
intuitively showed the facial areas considered important for CAD classifi-
cation by the algorithm (Supplementary material online, Figure S2B).

Dose–response relationship test

To further examine the robustness of the association between facial fea-
tures and CAD, we assessed the dose–response relationship between
the number of ‘positive facial areas’ and CAD prevalence in the training
dataset (Supplementary material online, Method S4.3). To identify the
positive facial areas, we used automatic landmark software to divide
patients’ frontal facial photo into nine parts, including left cheek, right
cheek, forehead, left eye, right eye, bilateral ears, nose, mouth, and chin
(Supplementary material online, Figure S2A). Positive areas were those
that contributed to the detection of CAD, and they were identified by a
decrease in the AUC of the model after occluding those specific areas of
the photos. We divided patients into three groups based on the number
of positive facial areas (0–3, 4–6, or 6–9 positive facial areas) and com-
pared the prevalence of CAD, one-/two-vessel disease, and three-vessel/
left main disease among these groups.
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..Statistical analysis
Based on the results of validation group, we hypothesized that our algo-
rithm would have a sensitivity of 0.8 and specificity of 0.6 in the test group.
The sampling precision of the sensitivity calculation was estimated at ±5%
with a 5% significance level. Thus, we needed to enrol 246 patients with
CAD and 369 patients without CAD in the test group to detect the sensi-
tivity and specificity of the algorithm.18

Data are presented as mean ± standard deviation for continuous varia-
bles and percentages for discrete variables. Categorical variables were
compared using chi-square or Fisher’s exact tests, and continuous varia-
bles were compared using t or Mann–Whitney U tests.

Exact 95% confidence intervals (CIs) were calculated for all measures
of diagnostic performance. We used Delong tests to compare the AUC
of different models. Pre-specified subgroup analyses were conducted
according to age, sex, angina symptom, risk factors, and extent of coron-
ary lesions. To further robust our results, we performed two sensitivity
analyses, including (i) using photos with increased or decreased pixels to
assess the algorithm performance in different image quality and (ii) testing
the algorithm performance in the extra centre that was not included in
the development phase.

All comparisons were two-sided, with statistical significance defined as
P< 0.05. Analyses were calculated using SAS version 9.4 (SAS Institute
Inc.).

Results

Study population
Between July 2017 and March 2019, 5840 patients who met the crite-
ria for inclusion were enrolled across eight sites (Figure 1). We
excluded 44 patients (0.8%) with unqualified facial photos. Among
the remaining 5796 patients, we randomly divided 90% (n= 5216)
into the training group and 10% (n= 580) into the validation group.
The baseline characteristics were similar in the two groups (Table 1).

Between April 2019 and July 2019, 1024 eligible patients were
enrolled at nine sites for inclusion in the test group; the final dataset
included 1013 patients after excluding 11 (1.1%) patients with un-
qualified facial photos (Figure 1). Compared with patients in the train-
ing group, those in the test group were older, more likely to have
undergone cCTA, and less likely to be male, have cardiac risk factors,
have lifestyle risk factors, and be undergoing medical therapy
(Table 1).

Model performance in validation dataset
The AUC, sensitivity, specificity, PPV, NPV, and accuracy of the algo-
rithm and other models are presented in Table 2, Supplementary ma-
terial online, Table S2, and Figure 2. The algorithm achieved an AUC
of 0.757 (95% CI, 0.710–0.805) in the validation group and 0.730
(95% CI, 0.699–0.761) in the test group. Using the operating point
with the maximum sum of sensitivity and specificity, the algorithm
had sensitivity of 0.71 and specificity of 0.72 in the validation and sen-
sitivity of 0.68 and specificity of 0.68 in the test group. These results
corresponded to a PPV of 0.89 and NPV of 0.42 in the validation
group and PPV of 0.72 and NPV of 0.64 in the test group. Using the
operating point with high sensitivity (80%), the algorithm had sensitiv-
ities and specificities, respectively, of 0.80 and 0.61 for the validation
group and 0.80 and 0.54 in the test group. In the test dataset, the algo-
rithm exhibited a higher AUC when compared with the Diamond–
Forrester model (0.730 vs. 0.623, P< 0.001), the CAD consortium
clinical score (0.730 vs. 0.652, P< 0.001) and the logistic regression
model based on 26 baseline variables (0.730 vs. 0.660, P< 0.001). The
addition of the three variables in the Diamond–Forrester (0.730 vs.
0.726, P= 0.66) and the 26 variables in the logistic regression models
(0.730 vs. 0.724, P= 0.52) did not significantly improve the AUC of
the algorithm.
Figure 3 summarizes the algorithm performance in subgroups of

the test dataset. The algorithm had similar performance in male and

Figure 1 Study flowchart. Among the nine centres in the test group, eight also participated in the training group and the validation group. CABG,
coronary artery bypass grafting; PCI, percutaneous coronary intervention.
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....................................................................................................................................................................................................................

Table 1 Baseline characteristics

Characteristics Training group,

N5 5216

Validation group,

N5580

P-valuea Test group,

N5 1013

P-valueb

Age, years 59.2 ± 9.2 59.4 ± 9.2 0.66 61.3 ± 10.3 <0.001

Male 3810 (73.0) 401 (69.1) 0.05 579 (57.1) <0.001

Han ethnicity 4977 (95.4) 543 (93.6) 0.05 1001 (98.7) <0.001

Birthplace 0.20 <0.001

East 1077 (20.6) 115 (19.8) 471 (46.5)

Northeast 617 (11.8) 61 (10.5) 66 (6.5)

North 2971 (57.0) 328 (56.6) 351 (34.6)

Northwest 118 (2.3) 16 (2.8) 13 (1.3)

South Central 371 (7.1) 56 (9.7) 105 (10.4)

Southwest 62 (1.2) 4 (0.7) 7 (0.7)

Education 0.89 0.001

Less than high school 2462 (47.2) 277 (47.8) 524 (51.7)

High school 1405 (26.9) 158 (27.2) 288 (28.4)

University 1291 (24.8) 137 (23.6) 194 (19.1)

Postgraduate or above 58 (1.1) 8 (1.4) 8 (0.8)

Sedentary work 1221 (23.4) 124 (21.4) 0.27 173 (17.1) <0.001

Work time 0.09 <0.001

<8 h/day 663 (12.7) 83 (14.3) 127 (12.5)

8–10 h/day 1209 (23.2) 127 (21.9) 164 (16.2)

>10 h/day 252 (4.8) 16 (2.8) 34 (3.4)

Unemployed or retired 3092 (59.3) 354 (61.0) 689 (67.9)

Lifestyle

Alcohol (>2 times/week for >1 year) 1373 (26.3) 141 (24.3) 0.30 188 (18.5) <0.001

Meat (>2 times/week, >300 g/time) 1216 (23.3) 143 (24.7) 0.47 103 (10.2) <0.001

Fast food (>4 times/week) 387 (7.4) 36 (6.2) 0.29 24 (2.4) <0.001

Sport (aerobic exercise >1 hour) 0.39 <0.001

>_3 times/week 2708 (51.9) 293 (50.5) 376 (37.1)

1–2 times/week 911 (17.5) 94 (16.2) 105 (10.4)

Never 1597 (30.6) 193 (33.3) 533 (52.6)

Smoking (pack years) 2.5 (0–29.3) 0 (0–28.0) 0.06 0 (0–15) <0.001

BMI 25.7 ± 3.2 25.8 ± 3.3 0.32 25.3 ± 3.4 0.001

Family history 883 (16.9) 85 (14.7) 0.16 258 (25.4) 0.001

Hypertension 3228 (61.9) 357 (61.6) 0.88 551 (54.3) <0.001

Hyperlipidaemia 3970 (76.1) 428 (73.8) 0.22 358 (35.3) <0.001

Diabetes 1457 (27.9) 177 (30.5) 0.19 235 (23.2) 0.002

Cerebrovascular disease 582 (11.2) 58 (10.0) 0.40 62 (6.1) <0.001

Heart failure 86 (1.6) 13 (2.2) 0.30 21 (2.1) 0.34

Peripheral vascular disease 329 (6.3) 41 (7.1) 0.48 57 (5.6) 0.41

Chronic renal disease 48 (0.9) 8 (1.4) 0.28 26 (2.6) <0.001

COPD 68 (1.3) 7 (1.2) 0.85 27 (2.7) 0.001

Symptom 0.86 <0.001

No symptom 603 (11.6) 72 (12.4) 98 (9.7)

Non-angina 965 (18.5) 102 (17.6) 285 (28.1)

Atypical angina 1952 (37.4) 222 (38.3) 406 (40.0)

Typical angina 1696 (32.5) 184 (31.7) 225 (22.2)

Medication

Aspirin 2927 (56.1) 325 (56.0) 0.97 416 (41.0) <0.001

Clopidogrel 1154 (22.1) 129 (22.2) 0.95 159 (15.7) <0.001

b-blocker 1439 (27.6) 162 (27.9) 0.86 225 (22.2) <0.001

Statins 2387 (45.8) 260 (44.8) 0.67 402 (39.6) <0.001

ACEI 483 (9.3) 67 (11.6) 0.07 87 (8.6) 0.50

Continued
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..female patients and had better performance in patients with typical
angina, more CAD risk factors, <60 years old or more complex
lesions. In sensitivity analysis of changing photo pixels, the algorithm
performance remained stable (Supplementary material online, Figure
S3). In another sensitivity analysis of performance test in the extra
centre (n= 16) that was not included in the development phase, the
AUC was 0.436.

Algorithm performance in predicting
CAD risk factors
For the continuous risk factors, the algorithm achieved a mean abso-
lute error (MAE) of 5.68 (95% CI, 5.41–5.95) for age and 2.59 (95%
CI, 2.45–2.72) for BMI (Table 3). For categorical risk factors, the algo-
rithm achieved an AUC of 0.990 for sex, 0.694 for hyperlipidaemia,
0.579 for diabetes, 0.606 for hypertension, and 0.831 for smoking
(Table 3).

Visualization results
After occluding each of the seven facial parts, the largest decrease in
AUC was found for the cheek (�AUC = 0.0365), followed by the
forehead (�AUC = 0.0185), nose (�AUC = 0.0178), eyes (�AUC
= 0.0160), mouth (�AUC = 0.0154), ears (�AUC = 0.0148), and
chin (�AUC = 0.0062) (Figure 4A). In tests occluding regions of
11� 11 pixels, we randomly selected 10% of patients (n= 522) from
the training group and successfully obtained 2088 heatmaps identify-
ing the regions that the algorithm might have used to make its predic-
tion. Figure 4B shows the specific facial features highlighted by the
algorithm.

Dose–response relationship between
facial areas and CAD
There was a trend of higher prevalence of CAD (P< 0.001), one-/
two-vessel disease (P< 0.001), and three-vessel/left main disease
(P< 0.001) as the number of positive facial areas increased
(Figure 4C).

Discussion

In this large multicentre cross-sectional study, we found that a deep
learning algorithm based on facial photos had a moderate perform-
ance in detecting CAD (Take home figure). The algorithm had an AUC
of 0.730 (95% CI 0.699–0.761), sensitivity of 0.80, and specificity of
0.54 in the test group. Furthermore, the algorithm had a higher AUC
when compared with the Diamond–Forrester model (0.730 vs.
0.623, P< 0.001) and the CAD consortium clinical score (0.730 vs.
0.652, P< 0.001).

Our study further clarified the feasibility of using human facial fea-
tures to detecting CAD. Christoffersen et al.10 previously found that
male pattern baldness, earlobe crease, and xanthelasmata further im-
prove risk classification of the Framingham risk model, especially for
individuals of intermediate risk. In another cross-sectional study
(n= 558), Wang et al.14 demonstrated that diagonal earlobe creases
had a sensitivity of 78% and specificity of 61% for identifying CAD
(one or more >_50% stenosis). However, prior studies have been un-
able to integrate all CAD-related facial features to predict CAD,
relied on subjective inspection of facial features, and lacked validation
of a separate dataset. In the present study, we developed and

....................................................................................................................................................................................................................

Table 1 Continued

Characteristics Training group,

N5 5216

Validation group,

N5580

P-valuea Test group,

N5 1013

P-valueb

CCB 1280 (24.5) 137 (23.6) 0.63 211 (20.8) 0.01

Long-acting nitrate 1134 (21.7) 128 (22.1) 0.86 134 (13.2) <0.001

Serum glucose, mmol/L 5.99 ± 1.97 5.99 ± 1.95 0.42 5.94 ± 1.92 0.03

Total cholesterol, mmol/L 4.16 ± 1.11 4.19 ± 1.13 0.58 4.52 ± 1.15 0.01

Triglycerides, mmol/L 1.64 ± 1.14 1.65 ± 1.03 0.94 1.68 ± 1.12 0.26

HDL, mmol/L 1.19 ± 0.32 1.18 ± 0.32 0.85 1.23 ± 0.34 0.006

LDL, mmol/L 2.45 ± 0.90 2.46 ± 0.91 0.98 2.58 ± 0.87 0.76

Lesion severity 0.87 <0.001

No coronary stenosis 1178 (22.6) 134 (23.1) 467 (46.1)

One vessel 1041 (20.0) 118 (20.3) 220 (21.7)

Two vessels 1037 (19.9) 107 (18.4) 144 (14.2)

Three vessels 1490 (28.6) 173 (29.8) 149 (14.7)

Left main 470 (9.0) 48 (8.3) 34 (3.4)

Coronary test 0.93 <0.001

Coronary angiography 4638 (88.9) 515 (88.8) 745 (73.5)

Computed tomography 578 (11.1) 65 (11.2) 269 (26.5)

Data presented as mean ± standard deviation or n (%). No data were missing in Table 1.
ACEI, angiotensin-converting enzyme inhibitor; BMI, body mass index; CCB, calcium channel blocker; COPD, chronic obstructive pulmonary disease; HDL, high-density lipopro-
tein; LDL, low-density lipoprotein.
aP-value was obtained by comparison of the training and validation groups.
bP-value was obtained by comparison of the training and test groups.
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.validated a deep learning algorithm that integrated patients’ facial in-
formation from photos to detect CAD. The algorithm had moderate
performance (AUC 0.730, sensitivity 0.80, specificity 0.54) in our test
dataset, and it outperformed the traditional Diamond–Forrester
model and the widely used CAD consortium model.5,9 Furthermore,
the addition of clinical variables did not improve the algorithm per-
formance, which meant that the algorithm could be easily used based
on only facial photos without additional medical history or examin-
ation. Our study demonstrated the feasibility of a deep learning algo-
rithm based on human facial photos for CAD screening.

Our findings are plausible according to several analyses to under-
stand the algorithm. First, our hypothesis that the algorithm may, in
part, predict CAD by identifying CAD risk factors can be speculated
by our results showing analysing facial photo also precisely predicted
cardiovascular risk factors. AUC of 0.99 for sex conformed to the
common sense that sex may be easily determined by facial photos.
AUC of other risk factors ranged from 0.58 to 0.83, which were

consistent with prior small-sample studies.19–21 Further supporting
our hypothesis, the addition of clinical variables to the algorithm
resulted in no significant improvement in performance. Second, our
occlusion tests confirmed that many facial regions highlighted by the
algorithm were consistent with those identified in prior studies, such
as male pattern baldness, frontoparietal baldness, and earlobe
crease.10,11 Third, we confirmed a dose–response relationship be-
tween the number of facial regions considered important for CAD
classification by the algorithm and CAD prevalence. Collectively,
these results highlight the reliability and scientific basis of the
algorithm.

Interestingly, in visualization tests, the cheek, forehead, and nose
contributed more to our algorithm than other facial areas. These
results differ from those of previous reports showing features of the
eyes, ears, and hair were more likely to be associated with CAD.10,11

There are several potential explanations for these findings. First, the
photo pre-processing used in our study may have influenced the

....................................................................................................................................................................................................................

Table 2 Performance of different models for detecting coronary artery disease

Models AUC (95% CI) Sensitivity Specificity PPV NPV Accuracy P-value

Validation dataset (Max SenþSpe)a

Algorithm 0.757 (0.710–0.805) 0.71 0.72 0.89 0.43 0.71 Ref

Diamond–Forrester model 0.631 (0.579–0.683) 0.27 0.93 0.92 0.28 0.42 <0.001

CAD consortium clinical score 0.694 (0.645–0.743) 0.57 0.72 0.87 0.34 0.60 0.03

Logistic Regression Modelb 0.750 (0.701–0.799) 0.78 0.62 0.87 0.46 0.74 0.79

Algorithm þ Diamond–Forrester model 0.755 (0.710–0.805) 0.63 0.78 0.90 0.39 0.67 0.87

Algorithm þ logistic regression model 0.786 (0.740–0.833) 0.76 0.72 0.90 0.47 0.75 0.08

Validation dataset (Sen = 0.8)a

Algorithm 0.757 (0.710–0.805) 0.80 0.61 0.87 0.47 0.75 Ref

Diamond–Forrester model 0.631 (0.579–0.683) 0.82 0.31 0.80 0.34 0.70 <0.001

CAD consortium clinical score 0.694 (0.645–0.743) 0.81 0.39 0.82 0.39 0.72 0.03

Logistic regression modelb 0.750 (0.701–0.799) 0.80 0.59 0.87 0.47 0.75 0.79

Algorithm þ Diamond–Forrester Model 0.755 (0.710–0.805) 0.80 0.57 0.86 0.46 0.75 0.87

Algorithm þ logistic regression model 0.786 (0.740–0.833) 0.80 0.65 0.88 0.49 0.76 0.08

Test dataset (Max SenþSpe)c

Algorithm 0.730 (0.699–0.761) 0.68 0.68 0.72 0.64 0.68 Ref

Diamond–Forrester model 0.623 (0.588–0.657) 0.49 0.69 0.65 0.54 0.58 <0.001

CAD consortium clinical score 0.652 (0.618–0.686) 0.73 0.50 0.63 0.61 0.63 <0.001

Logistic regression modelb 0.660 (0.626–0.693) 0.60 0.66 0.67 0.58 0.63 <0.001

Algorithm þ Diamond–Forrester Model 0.726 (0.695–0.757) 0.76 0.60 0.69 0.68 0.69 0.66

Algorithm þ logistic regression model 0.724 (0.693–0.755) 0.71 0.63 0.69 0.65 0.67 0.52

Test dataset (Sen = 0.8)c

Algorithm 0.730 (0.699–0.761) 0.80 0.54 0.66 0.68 0.67 Ref

Diamond–Forrester model 0.623 (0.588–0.657) 0.82 0.31 0.58 0.59 0.58 <0.001

CAD consortium clinical score 0.652 (0.618–0.686) 0.81 0.61 0.61 0.63 0.61 0.001

Logistic regression modelb 0.660 (0.626–0.693) 0.80 0.40 0.61 0.62 0.61 <0.001

Algorithm þ Diamond–Forrester model 0.726 (0.695–0.757) 0.80 0.53 0.67 0.69 0.67 0.66

Algorithm þ logistic regression model 0.724 (0.693–0.755) 0.80 0.49 0.65 0.67 0.65 0.52

AUC, area under the receiver operating characteristic curve; NPV, negative predictive value; PPV, positive predictive value; Sen, sensitivity; Spe, specificity.
aPrevalence of CAD (one coronary lesion >_50%) in the validation group was 76.9% (446/580).
bThe logistic regression model included the following baseline variables: age, sex, education, sedentary work, work time, lifestyle, sport, smoking, body mass index, family history
of coronary artery disease, hypertension, hyperlipidaemia, diabetes, cerebrovascular disease, heart failure, peripheral vascular disease, chronic renal disease, chronic obstructive
pulmonary disease, symptoms, serum glucose, total cholesterol, triglycerides, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol. This model included
all variables in traditional and updated coronary artery disease prediction models.3–8

cPrevalence of CAD (one coronary lesion >_50%) in the test group was 53.9% (546/1013).
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.
classification outcomes. In visualization tests, we reduced the photo
resolution to 256� 256 pixels and used only frontal photos for the
deep learning algorithm. Features of the eyes, ears, and hair may not
have been clear enough under these circumstances for accurate clas-
sification decisions. Second, our deep learning algorithm may have
extracted some features that are strongly associated with CAD but
are beyond human perception or understanding. For example, per-
ceived age, facial adiposity, and shapes have been associated with
human cardiovascular health, but it has been difficult to quantify these
features and conduct studies to confirm the conclusions.19,20,22 A
deep learning algorithm is well-suited for such applications. For in-
stance, Zhao et al.23 successfully used facial recognition techniques to
quantitatively analyse the results of facial inspection for health status
prediction, which is an important but complex diagnostic tool in trad-
itional Chinese medicine. Our algorithm may integrate such abstract
features for CAD prediction. Third, the association between CAD
and features of the cheek, forehead, and nose may have been misesti-
mated in previous studies because of the reliance on investigators’
subjective assessments of wrinkles and deep pouches, among other
features. Results from our occlusion tests suggest that further evalu-
ation of the association between these facial features and cardiac
health as well as the associated mechanisms may be warranted.

There are two potential application scenarios for our algorithm.
First, as a convenient algorithm which performed better than
Diamond–Forrester model, our algorithm can assist to assess the
pre-test CAD probability to help guide further diagnostic tests.
Several notable models have been develop to assess pre-test CAD

probability.3–8 The Diamond–Forrester model was a landmark work
published in 1979 to determine the pre-test CAD probability based
on age, sex, and type of chest pain.3 This model was simple enough
for routine clinical use.5 However, the obsolescence of model devel-
opment population made it overestimates CAD risk in more con-
temporary populations.24 Updated models including additional risk
factors have improved performance and generalizability, but the
multidimensional variables increased the difficulty in clinical applica-
tion.13–17 Compared with traditional models, our algorithm had a
better performance, which may support our algorithm to assist in
pre-test CAD probability assessment or even to be an adjunctive test
for further diagnostic test, such as exercise treadmills etc., particularly
in patients with <60 years old, typical angina or more CAD risk fac-
tors. Second, the algorithm may hold promise for early CAD screen-
er in high-risk community populations. The algorithm could be
developed as a self-reported mobile application for use in high-risk
community populations to assess CAD risk in advance of a medical
visit, with the results used to support a patient-centred discussion on
cardiovascular health. Further algorithm refinement and validation
based on community populations are warranted.

Study limitations
This study has several limitations. First, we only examined Chinese
patients, and our findings may not generalize to populations of other
ethnicities. But this may not influence our study to achieve our pri-
mary aim of assessing the feasibility of detecting CAD based on facial
photos using deep learning. Future cohorts can use transfer learning

Figure 2 Algorithm performance for detecting coronary artery disease. AUC, area under the receiver operating characteristic curve; CAD, coron-
ary artery disease; DF, Diamond-Forrester; LR, logistic regression. *Delong test P-value <0.05 (algorithm as reference).
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from ResNet-50 or our algorithm to replicate or to further expand
towards other descent. Second, significant CAD was defined based
on coronary angiography or cCTA—the selection between these
two modalities may bias the outcomes. But we believed that the bias
was small, as 64-row cCTA was found to have reasonably consistent
diagnostic performance when compared with coronary angiog-
raphy.25 In the present study, the concordance rate of cCTA and sub-
sequent coronary angiography performed within 3 months was
93.1% in detecting coronary stenosis >_50% (Supplementary material
online, Table S3). Third, angiography was reviewed by well-trained
radiologists, rather than interventional, general cardiologists or quan-
titative coronary angiography, which even though was very unlikely
to bias the outcomes. Fourth, only one centre in the test group was
different from those in the model development group, potentially
limiting the generalizability of the algorithm. In this centre, both
the small-sample size and patient heterogeneity could lead to
this lower AUC (0.436). Thus, further external validation is still war-
ranted. Thus, further external validation is still warranted. Even so,

Figure 3 Algorithm performance in subgroups of test group. AUC, area under the receiver operating characteristic curve; CAD, coronary artery
disease. Subgroup analyses of coronary artery disease risk factors were grouped based on the presence of >_5 of the following risk factors: age >60
years, male sex, diabetes mellitus, hypertension, hyperlipidaemia, body mass index >_25 kg/m2, and current or ex-smoker.

.................................................................................................

Table 3 Predicting risk factors of coronary artery dis-
ease by algorithm

Risk factors AUC (95% CI) MAE (95% CI)

Continuous variables

Age – 5.68 (5.41–5.95)

Body mass index — 2.59 (2.45–2.72)

Categorical variables

Male sex 0.990 (0.982–0.997) —

Hyperlipidaemia 0.694 (0.658–0.730) —

Diabetes mellitus 0.579 (0.538–0.621) —

Hypertension 0.606 (0.571–0.641) —

Current or ex-smoker 0.831 (0.805–0.856) —

The algorithm performance in predicting coronary artery disease risk factors was
assessed in the test group.
AUC, area under the receiver operating characteristic curve; CI, confidence
interval; MAE, mean absolute error.
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the large population heterogeneity between training and test periods,
which was attributed to the different time of starting enrolment in
each hospital, suggested the robust performance of our facial algo-
rithm. Fifth, for CAD screening, the low specificity and upwards of
46% false-positive results may cause anxiety and inconvenience for
patients. Thus, target populations who have a relatively high CAD
risk and could benefit most from the algorithm should be explored.
Finally, our study aim was only to evaluate the feasibility of using
deep learning algorithm to detect CAD based on facial photos.
Thus, the algorithm in its current form is not optimized for use in clin-
ical practice. The algorithm requires further development and valid-
ation based on the target outpatient or community populations. In
addition, methods to reduce the photo quality requirements and
simplify the photography processes should be explored to make

the algorithm better meet the needs of real-world application.
Furthermore, privacy protection, availability of this technology on insur-
ance, and other social implications should be concerned in further work.

Conclusions

Our results proposed a new concept where facial analysis using deep
learning can help to detect CAD in this large study of Chinese popu-
lation. This effort supported a potential step towards the develop-
ment of a deep learning-based tool for the pre-test CAD
probabilities assessment in outpatient clinics or the CAD screening in
community, which may help to guide further diagnostic testing or
medical visit.

Figure 4 Results of occlusion and dose–response relationship tests. AUC, area under the receiver operating characteristic curve. In tests occluding
facial regions (A), �AUC was defined as the decrease in algorithm performance after occluding a specific facial region. In tests occluding regions of
11� 11 pixels (B), the green regions were highlighted by the algorithm as important for detecting CAD. In the dose–response relationship test (C),
the positive facial areas were judged based on the change in algorithm performance after occlusion.
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