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Although the American Heart Association, the American 
College of Cardiology, and the American College of 

Sports Medicine, among other leading organizations, have 
emphasized that sedentary behavior (SB) and physical inac-
tivity (PI) are major modifiable cardiovascular disease (CVD) 
risk factors, a sizable percentage of the United States and 
worldwide population still present with high levels of SB/PI 
and low levels of physical activity (PA).1–3 Recently, a ma-
jor emphasis has been directed at making health promotion 
a priority, including the promotion of PA and exercise train-
ing (ET) and improving levels of cardiorespiratory fitness 
(CRF) in the United States and worldwide in efforts to prevent 
chronic diseases, especially CVD.2,4

In this article, we review the adverse consequences of SB 
and PI and the potential benefits of PA/ET on cardiovascular 
health. We also review the importance of CRF as perhaps one 
of the most important CVD risk factors, as well as the prog-
nostic utility of fitness compared with obesity and the meta-
bolic syndrome. The potential for ET and improvements in 
CRF for patients with heart failure (HF) are also reviewed, 
including the importance of muscular fitness in addition to 
aerobic fitness. Finally, we conclude by recommending areas 
in which greater investigative attention is needed.

SB and CVD
In addition to the positive cardiovascular health effects asso-
ciated with increases in moderate and vigorous PA, there is 

emerging evidence of several negative health consequences 
associated with SB, which has been defined as any waking 
behavior characterized by an energy expenditure ≤1.5 meta-
bolic equivalents of task (METs), while in a seated, reclined 
or lying posture.5 It is important to emphasize that SB is dis-
tinct from PI, where an individual does not perform moderate-
to-vigorous PA. Although SB and PA are at opposite ends of 
the energy expenditure continuum,6 the addition of a postural 
component as a requirement to be considered sedentary sug-
gests that it is a unique behavior that can be intervened on. 
One can envision the situation where someone is physically 
active for the recommended 150 to 300 minutes per week,7 yet 
they may sit for several hours a day in a sedentary occupation 
or during their leisure time.

The American Heart Association recently released a 
Science Advisory that highlighted the deleterious association 
between SB and CVD morbidity and mortality.8 However, the 
American Heart Association report stopped short of making 
specific quantitative recommendations about target levels of 
SB and reinforced the need for further research that would 
inform future quantitative public health guidelines, includ-
ing the need for interventions using randomized controlled 
trial designs.8 The American Diabetes Association has in-
corporated SB into their recent Position Statement on PA/
ET and diabetes mellitus, recommending that adults should 
reduce their overall SB and interrupt prolonged bouts of SB 
with episodes of light-intensity PA.9 Some countries, such as 
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Australia and the United Kingdom, have also begun to release 
SB guidelines alongside their PA guidelines,10,11 but they do 
not make specific quantitative recommendations for adults. 
Rather, they recommend minimizing time spent sitting and 
breaking up periods of prolonged sitting. Given the differ-
ences in sedentary time between self-reported and objectively 
measured estimates and the lack of a clear threshold of SB 
that reduces health risks, it is difficult at the present time to 
provide a quantitative recommendation. Therefore, future 
studies are needed to use devices that objectively quantify SB 
to make strides towards identifying critical thresholds associ-
ated with increased risk of CVD.

The health consequences associated with SB were inves-
tigated in a series of preclinical studies conducted in the early 
2000s.12,13 Using hindlimb suspension (unloading) in a rat 
model to mimic human SB, a decrease in lipoprotein lipase 
activity (the enzyme responsible for hydrolysis of triglycer-
ide-rich lipoproteins), triglyceride uptake into red skeletal 
muscle, and HDL (high-density lipoprotein) cholesterol con-
centration occurred within a day’s time.14 Further, a global 
gene-expression profiling study in rats identified 38 genes 
that were upregulated by SB (hindlimb unloading) and that 
27 of these upregulated genes remained above control levels 
even after the rats returned to standing and ambulation for 4 
hours.15 Furthermore, it is well-accepted that elevated levels 
of oxidative stress results in pervasive systemic impairments. 
Mitochondrial dysfunction has been recognized as a signif-
icant source of oxidative stress. Within the skeletal muscle 
cells, PGC-1α (proliferator-activated receptor γ coactivator 
1-α), a key regulator of mitochondrial mass/function, and 
NAD-dependent deacetylase SIRT3 (sirtuin-3), which pro-
motes the expression of PGC-1α, have been found to be lower 

in sedentary individuals.16 Their inverse relation with levels 
of reactive oxygen species may partly explain damage and 
mutations to DNA, which contributes to impaired mitochon-
drial and subsequently skeletal muscle quality and function. 
Experimental studies that mimicked SB in a laboratory set-
ting have also provided evidence of greater postprandial glu-
cose and insulin levels during bouts of prolonged sitting (ie, 7 
hours) compared with individuals taking frequent standing or 
walking breaks.17 Compared with prolonged sitting, breaking 
up sitting time with intermittent, light-intensity activity can in-
crease expression of anti-inflammatory and antioxidative path-
way modulators such as nicotinamide N-methyltransferase as 
well as regulators of glucose transporter type 4 translocation.18 
Individuals that chronically sit for long periods of time with-
out intermittent activity likely have reduced expression of key 
metabolic regulators. Taken together, these results indicate 
that the gross metabolic disturbances observed with SB result 
from metabolic alterations at the level of the muscle. While 
these studies suggest some potential mechanisms involved in 
SB, substantially more research is required to determine the 
pathophysiological pathways through which SB impacts risk 
for CVD, and whether these pathways differ from those asso-
ciated with PI.

The preclinical work described above was followed by 
a large number of epidemiological investigations of the as-
sociations between SB, such as daily sitting time or televi-
sion viewing, and several health outcomes. The evidence is 
strongest for the associations between SB and mortality from 
CVD and all-causes and weaker for mortality from cancer.19 
However, the weaker association between SB and cancer may 
be explained by the fact that cancer is a highly heterogeneous 
disease with several different causes and related treatments. 
For such reasons epidemiological studies investigating the re-
lationship between SB and cancer mortality should be inter-
preted with caution.

The first studies to comprehensively address the associ-
ation between SB and mortality reported robust and consist-
ent results. A study of 17 013 Canadian adults followed for 
an average of 12 years, reported a significant dose-response 
association between daily sitting time and both all-cause and 
CVD mortality.20 Compared with people who reported sitting 
almost none of the time, those that reported sitting almost all 
of the time had a 54% higher risk of dying from all-causes or 
CVD.20 These results were followed closely by a study that 
investigated the relationship between television viewing and 
mortality among 8800 Australian adults followed for a me-
dian of 6.6 years.21 When compared with those who reported 
watching television <2 hours per day, individuals watching ≥4 
hours per day experienced a 45% and 80% increased risk of 
all-cause and CVD mortality, respectively. The results of these 
early studies have been widely replicated and included in re-
cent meta-analyses investigating the association of SB with 
television viewing22 and sitting.23 Chau et al23 reported sum-
mary hazard ratios (HR) of 1.00 (95% CI, 0.98–1.03), 1.02 
(95% CI, 0.99–1.05), and 1.05 (95% CI, 1.02–1.08) for every 
1-hour increase in sitting between 0 and 3, >3 to 7, and >7 
hours of daily sitting, respectively. Similarly, Sun et al22 re-
ported that television viewing was associated with a signifi-
cant increased risk for all-cause mortality risk in a curvilinear, 

Nonstandard Abbreviations and Acronyms

BMI body mass index

CHD coronary heart disease

CRF cardiorespiratory fitness

CVD cardiovascular disease

ET exercise training

HDL high-density lipoprotein

HF heart failure

HF-ACTION Heart Failure: A Controlled Trial Investigating Outcomes of 
Exercise Training

HFpEF heart failure with preserved ejection fraction

HFrEF heart failure with reduced ejection fraction

HR hazards ratio

LM lean mass

LV left ventricle

METs metabolic equivalents of task

PA physical activity

PGC-1α proliferator-activated receptor γ coactivator 1-α

PI physical inactivity

SB sedentary behavior

SIRT sirtuin

T2DM type 2 diabetes mellitus

VO2 oxygen consumption
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direct fashion that increased steadily and more rapidly as tele-
vision viewing time increased.

A recent meta-analysis investigated the association be-
tween SB and incident CVD events using data from 9 pro-
spective cohort studies including 720 425 participants.24 The 
authors reported a summary HR of 1.14 (95% CI, 1.09–1.19) 
comparing the highest (12.5 h/d) versus lowest levels (2.5 h/d) 
sedentary time. They also observed a significant increased risk 
at >10 h/d of sedentary time (HR=1.08; 95% CI, 1.00–1.14).24 
The reported HR of this meta-analysis seems to confirm the 
increased CVD risk associated with SB, however, the effects 
of SB may be less pronounced than what was suggested in 
prior smaller studies.

Interactions Between SB and PA
The effects of SB and PA on health outcomes are currently 
object of intense scrutiny. Several studies have reported that 
the relative risks associated with sedentary time are higher a-
mong people who are not regularly physically active. For ex-
ample, a meta-analysis of epidemiological studies reported a 
summary HR associated with SB of 1.46 (95% CI, 1.22–1.75) 
in those with low levels of PA versus a summary HR of 1.16 
(95% CI, 0.84–1.59) in those with high levels of PA.25 In the 
largest study to date, Ekelund et al26 pooled data on 1 005 791 
participants to examine the combined effects of SB and PA on 
mortality from CVD, cancer, and all-causes, and they demon-
strated that moderate-to-vigorous PA was inversely associated 
with CVD mortality at every level of sitting (<2, 2–5.9, 6–8, 
and >8 hours per day). Conversely, sitting time was associated 
with increased mortality. When studying the effects of SB a-
cross different PA levels, while the associations between SB 
and mortality was significant in individuals with lowest lev-
els of moderate volume PA, the relationship between SB and 
mortality was no longer significant in individuals who were 
participating in ≥35.5 MET-hour per week of PA (≈60–75 
minutes per day of moderate intensity PA; Figure 1).26 Finally, 
the results for the joint association of television viewing and 
PA on CVD mortality were similar to those for sitting and PA.

In summary, in addition to the beneficial effects of PA 
on risk for CVD (discussed below), there is emerging evi-
dence that excessive SB is also an important CVD risk factor, 

particularly in those with lowest levels of moderate volume 
PA. To the contrary, high levels of PA appear to attenuate the 
negative cardiovascular consequences of SB, but more re-
search is required to better determine the interactions between 
PA/SB on health outcomes.

Consequences of PI on Cardiovascular Health
Cardiovascular health is independently associated with PA, 
with PI linked with the greatest risk of developing CVD.27,28 
The prevalence of PI has increased over recent years, perhaps 
as the result of a greater adoption of the Western lifestyle, char-
acterized by greater sedentary time, lower participation in ac-
tive transport, and time spent in leisure or purposeful PA.29–31 
Of note, a global examination of PI and noncommunicable di-
sease prevalence estimated that 6% of coronary artery disease, 
7% of type 2 diabetes mellitus (T2DM), 10% of breast cancer, 
and 10% of colon cancer cases were caused by PI. Premature 
mortality as a result of PI accounted for over 5.3 million glo-
bal deaths in 2008,28 and in the United States, all-cause and 
CVD-specific mortality advanced mortality by 4 and 2.4 years, 
respectively.32 By eliminating PI, it is estimated that life expec-
tancy of the world’s population would increase by 0.68 years.28

PI is also closely associated with metabolic disorders, such 
as impaired glucose metabolism, which substantially increas-
es risk of CVD.33 Troubling trends of an increased prevalence 
of T2DM in children and young adults are in part because 
of unhealthy lifestyle which promotes PI and the consump-
tion of foods with low nutritional value.34 In a longitudinal 
examination, 3596 Finnish youth (baseline age, 3–18 years) 
were followed for 31 years to determine the effects of persis-
tent PI on glucose metabolism in adulthood.35 Compared with 
participants who were persistently physically inactive, those 
who increased PA (relative risk, 0.47; 95% CI, 0.29–0.76) or 
remained persistently active had a lower relative risk for hav-
ing impaired glucose metabolism at follow-up (0.70; 95% CI, 
0.51–0.97). However, individuals who had decreased PA were 
at similar risk (relative risk, 0.93; 95% CI, 0.66–1.36) to those 
with persistent PI.

Although the relation between PI and cardiovascular 
health is independent and robust, the modulatory effects of 
PI on cardiovascular health are complex and not completely 
elucidated. Strong predictors of CVD, such as conduit arte-
rial stiffness and reduced endothelium-dependent dilation (ie, 
flow-mediated dilation), have been well documented in phys-
ically inactive men and women.36 Much of our current under-
standing of the vascular consequences of becoming inactive 
has been through extreme models of PI, such as bed rest or 
limb immobilization.37–39 In contrast, Boyle et al40 sought to 
implement a real-world model of PI by reducing daily PA lev-
els of highly active volunteers (>10 000 steps per day) to PI 
levels (<5000 steps per day) over a 5 day period. This short ex-
posure to a physically inactive lifestyle induced a decrease in 
popliteal artery flow-mediated dilation (baseline, 4.7±0.98%; 
day 5, 1.72±0.68%, P<0.05) and endothelial cell activation 
(CD62E+), and an increase of markers of endothelial cell ap-
optosis (CD31+/CD42b−). In line with these findings, both pre-
clinical and clinical investigations have identified oxidative 
stress as a prominent mediator of endothelial dysfunction.41–44 

Figure 1. Hazard ratios for the joint association of sitting time and 
physical activity with cardiovascular disease (CVD) mortality. Data 
derived from appendix of Ekelund et al.26
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Imbalances between the production and destruction of reac-
tive oxygen species by antioxidant defense systems associated 
with inactivity, promote the uncoupling of endothelial nitric 
oxide synthase. Such abnormalities result in reduced nitric ox-
ide bioavailability and increased production of superoxide.45 
Prolonged disruption of endothelial function and associated 
reduction in vascular compliance because of PI are particu-
larly damaging to cardiovascular health, finally imposing el-
evated loads on the left ventricle (LV), which may lead to LV 
stiffening, chamber remodeling and increasing risk of devel-
oping HF.46,47

PA and its Relation to Cardiovascular Health
The cardioprotective effects of regular PA, whether performed 
in low or high volumes, are clear and extend across all ages, 
sex, and race (Table 1).
27,48–61 However, much of the seminal epidemiological work 
quantifying the volume of PA necessary to curb health risks 
resulted from subjective assessments of PA, including the use 
of questionnaires or interviews.62–64 Technological advance-
ments have improved the accuracy and reliability of device-
measured PA levels and have become readily available to be 
applied in large scale epidemiological investigations for ob-
jective assessment of PA.65 These advancements coupled with 
large scale randomized controlled trials have allowed to ac-
curately identifying the specific PA volumes associated with 
improved markers of cardiovascular health.66–69 These results 
have made it possible to develop individualized PA recommen-
dations, thus moving away from a one size fits all approach.66

Despite the known benefits of PA, the adoption of a physi-
cally active lifestyle has remained low because of various rea-
sons: personal barriers associated with perceived limitations 
in self-efficacy, lack of time, and misconceptions of the vol-
ume of exercise necessary for cardiovascular health benefits. 
Despite the evidence supporting the cardiovascular benefits of 
moderate-to-vigorous PA performed even in bouts of at least 
10 minutes, the level of adherence of the general population 
to the guidelines remains unacceptably low. A recent prospec-
tive cohort study assessing PA levels in 1274 older men, over 
a median follow-up of 5 years investigated the effects of bouts 
of PA of at least 10 minutes on mortality.70 Accelerometers 
were used to quantify moderate-to-vigorous PA accumulated 
in sporadic minutes of PA or in bouts lasting ≥10 minutes. 
Over the course of a 7-day PA assessment period, only 16% 
of the older men met the recommended volume of PA when 
applying the ≥10 minutes criteria, whereas 66% of older men 
achieved 150 minutes of recommended activity with minutes 
of accumulated sporadic PA. Despite these stark differences 
in the proportion meeting PA recommendations, HR for all-
cause mortality when PA was accumulated sporadically (HR, 
0.59 [95% CI, 0.43–0.81]) did not differ from when PA was 
performed in ≥10 minutes bouts (HR, 0.58 [95% CI, 0.33–
1.00]), suggesting that participation in PA is beneficial irre-
spective of how it is accumulated. However, this study only 
included older men, clearly requiring further validation in 
younger populations and in women, finally allowing to poten-
tially develop even more individualized PA recommendations.

The benefits of PA on cardiovascular health and to com-
bat the aging process are multifaceted (Figure 2).71–97 Aging 

is associated with a decline in LV as well as vascular func-
tion, finally altering the interaction between the LV and arte-
rial system (ventricular-arterial coupling). The impairment in 
ventricular-arterial coupling is related, at least in part, to an 
increase in arterial stiffening, which increases the afterload on 
the heart and consequently increases LV stiffening. Prolonged 
exposure to these conditions as it occurs with aging increases 
the risk of developing HF. However, lifelong exercise, 4 to 
5 sessions per week can prevent age-related decrements in 
compliance and distensibility,68 while maintaining youth-
ful arterial compliance and function.69 Although the exact 
mechanisms responsible for the above described ET-induced 
cardiovascular benefits are not clear, several hypotheses have 
been proposed. Rodent models have provided evidence that 
ET enhances calcium handling through the sarcoendoplasmic 
reticulum calcium transport ATPase as well as an increase 
in its mRNA expression.70,98 Furthermore, ET reduces circu-
lating markers of systemic inflammation, such as C-reactive 
protein,99 which may protect against inflammation-mediated 
myocardial fibrosis and dysfunction. In regard to the periph-
eral vasculature, regular PA can reduce mitochondrial reac-
tive oxygen species production, enhance cellular antioxidant 
defense proteins, and reduce mitochondrial fission (a sign of 
mitochondrial dysfunction).100 Collectively, these beneficial 
effects of ET may contribute to improving compliance, reduc-
ing stiffness, and afterload, finally reducing the risk of future 
cardiac dysfunction.

Importance of Cardiorespiratory Fitness
PA and ET are associated with improvements in cardiovascu-
lar health and longevity, however, much of these benefits may 
result from the improvements in CRF following increased PA, 
which is a stronger predictor of prognosis compared with PA/
ET alone.1–3,101,102 While the explanatory factors for the differ-
ent prognostic ability of CRF versus PA/ET are complex, a 
potential reason may be related to the well-documented obser-
vations of interindividual fitness changes to the same volume 
of PA/ET.103,104 The gold standard for CRF remains the meas-
urement of peak oxygen consumption (VO

2
) by cardiopul-

monary exercise testing using gas exchange analysis. Other 
assessments of exercise capacity, such as estimated METs, 
determined by speed and incline on the treadmill using stand-
ard algorithms, or even 6-minute walk test, particularly in pa-
tients with coronary heart disease (CHD) and HF, have been 
potent predictors of prognosis.105–108 The potential benefits of 
improved PA, ET, and CRF are numerous and are summarized 
in Table 2.

Similar to high levels of PA, high levels of CRF are asso-
ciated with reduced prevalence of many CVD and CHD risk 
factors, including hypertension, obesity, metabolic syndrome, 
and T2DM.101,102,130,131 Clearly, many studies have demonstrat-
ed the powerful impact of CRF on prognosis, which has been 
noted in large population-based studies, clinical cohorts, and 
in those at high CVD risk and in CVD populations, such as 
CHD and HF.1–3,101,102,131

Nearly a decade ago, a very high-profile meta-analysis by 
Kodama et al132 of 33 studies in over 100 000 individuals ob-
served that every 1 estimated MET increase in CRF was as-
sociated with 13% and 15% reductions in all-cause and CVD/
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Table 1. Physical Activity and Prevention of CVD and CVD Related Events

Author Population PA Measurement Results

Lee et al27 40 801 men; 14 336 
women

PA questionnaire is 
assessing duration, 
distance, frequency, 

and speed of running or 
jogging.

Compared with nonrunners, runners had 30% and 45% lower adjusted risks of 
all-cause and CV mortality, respectively, with a 3-year life expectancy benefit.

During an average 15-year follow-up, persistent runners had a 29% and 50% 
lower risks of all-cause and CV mortality, respectively, compared with never 
runners.

Florido et al48 4881 men; 6470 women Baecke questionnaire Participants maintaining PA recommendations compared with those 
maintaining poor activity had lower heart failure risk (0.69, 95% CI, 0.60–0.80).

Individuals increasing from poor to meeting PA recommendations had reduced 
heart failure risk (0.77, 95% CI, 0.63–93).

O’Donovan et al49 27 732 men; 31 273 
women

Interview is inquiring about 
housework, walking, sport, 
and exercise PA performed 

in previous 4 wk.

Risk of CVD mortality in overweight (1.41, 95% CI, 0.94–2.10) and obese (1.41, 
95% CI, 0.84–2.38) individuals did not differ compared with normal weight 
individuals meeting PA guidelines.

Nes et al50 19 269 men; 20 029 
women

PAI score Men and women with a PAI score of ≥100 had 17% (95% CI, 7%–27%) and 
23% (95% CI, 4%–38%) reduced risk of CVD mortality, respectively, compared 
with inactive individuals.

El Saadany et al51 7146 men; 8161 women PA interview Irregular (≤4 days/wk) PA and regular (>4 d/wk) PA were associated with lower 
risk of CVD mortality (0.66, 95% CI, 0.51–0.85 and 0.58, 95% CI, 0.47–0.72, 
respectively) compared with no activity.

These observations only remained true for women and not men for irregular 
and regular activity.

Kubota et al52 34 874 men; 40 038 
women

Self-administered PA 
questionnaire regarding 

leisure-time, commuting, 
housework PA.

Compared with the lowest quartile of daily PA, higher PA levels were associated 
with reduced risks of total and ischemic stroke. Highest PA level was not 
associated with reduced risks of hemorrhagic strokes.

Second and third quartile had lowest risk of total stroke (0.83, 95% CI, 0.75–
0.93 and 0.83, 95% CI, 0.75–0.92, respectively).

Lear et al53 54 621 men; 76 222 
women

International Physical 
Activity Questionnaire

Individuals with moderate or high PA levels had a lower risk of major CVD (0.86, 
95% CI, 0.78–0.93 and 0.75, 95% CI, 0.69–0.82, respectively) compared with 
those with low levels of PA.

Fishman et al54 1412 men; 1617 women Accelerometer Compared with the lowest tertile of activity, those in the second and third 
highest tertile had significantly lower risk of mortality (0.21, 95% CI, 0.12–0.38 
and 0.36, 95% CI, 0.30–0.44, respectively).

Soares-Miranda et al55 1641 men; 2566 women Minnesota Leisure-Time 
Activities Questionnaire

Walking pace, distance, leisure-time PA, and exercise intensity were associated 
with lower risk of CHD, stroke, and CVD.

Highest leisure-time PA (kcal/wk) compared with lowest quintile had lower risk 
for CHD (0.57, 95% CI, 0.45–73), stroke (0.56, 95% CI, 0.42–0.75), and CVD 
(0.59, 95% CI, 0.48–0.72).

Bell et al56 3707 blacks; 10 018 
whites

Baecke Questionnaire PA was inversely related to CVD, heart failure, and CHD incidence in both races, 
and stroke in blacks.

Shortreed et al57 4729 men and women Self-reported PA Compared with long-term physical inactivity, long-term PA was associated 
with a CVD rate ratio of 0.95 (95% CI, 0.84–1.07), all-cause mortality rate ratio 
of 0.81 (95% CI, 0.71–0.93), and CVD attributable mortality rate ratio of 0.83 
(95% CI, 0.72–0.97).

A greater protective effect of long-term PA on CVD incidence was present for 
men but not women.

Gulsvik et al58 5653 men and women Self-reported PA Individuals with a high level of PA compared with low PA levels had lower all-cause 
(0.63, 95% CI, 0.56–0.71), ischemic heart disease (0.66, 95% CI, 0.52–0.83), and 
stroke (0.66, 95% CI, 0.47–0.93) mortality risk compared with no activity.

Wen et al59 199 265 men; 216 910 
women

Leisure-time PA 
questionnaire

Compared with inactive individuals low-volume activity reduced all-cause 
mortality and extended life expectancy by 3 y.

Exercise 15 min/day =14% reduced risk of all-cause mortality.

Every additional 15 min of daily exercise further reduced all-cause mortality by 
4% (95% CI, 2.5–7.0).

Inactive individuals had a 17% (95% CI, 1.10–1.24) increased risk of mortality 
compared with low-volume group.

(Continued )
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CHD mortality, respectively. This large meta-analysis also 
defined age- and sex-specific levels of CRF that were associ-
ated with lowest event rates in women (40 years: 7 METs; 50 
years: 6 METs; and 60 years: 5METs) and men (40 years: 9 
METs; 50 years: 8 METs; and 60 years: 7 METs).

Additionally, CRF is associated with prognosis in those 
individuals with high-risks of CVD, including those with met-
abolic syndrome, pre-T2DM or T2DM.1–3,101,102,131,133 In such 
high-risk individuals, often those with high levels of CRF 
have a better prognosis that do unfit individuals without these 
disorders. High levels of CRF have also been protective a-
gainst lifetime CVD risks. In fact, subjects with a high burden 
of CHD risk factors but increased level of CRF have lifetime 
CVD risks similar to or even lower than those with lower risks 
factors,134 further supporting the powerful role of CRF even in 
those with otherwise high CVD risk.

Many studies have also investigated the effects of the 
changes in CRF over time on CVD risk factors and on CVD 
morbidity and mortality.1–3,101,102,131,133 Particularly, Sui et al131 
have recently reviewed the impact of changes in CRF on 

improvements in various CVD and CHD risk factors. Using 
the Aerobics Center Longitudinal Study (N=9777), Blair et 
al135 reported that men classified in the lowest 20th percen-
tile of CRF based on age at their first examination but fit at 
the time of their second examination several years later had 
a 52% reduction in CVD mortality compared with men who 
remained unfit. Similarly, Lee et al136 evaluated the effects 
of the changes in CRF on CVD mortality over a mean 11.4 
years follow-up in 14 345 subjects using the same Aerobics 
Center Longitudinal Study data set. They demonstrated that 
those individuals who presented with a preserved CRF or an 
increased CRF after 6.3 years from the initial CRF assessment 
had significant reductions in CVD mortality by 27% and 42%, 
respectively. Importantly, for every 1 estimated MET increase, 
all-cause and CVD mortality were reduced by 15% and 19%, 
respectively. Erikssen et al137 and others have noted similar 
findings about improvements in CRF over time.

The assessment of CRF represents the synergistic func-
tioning of multiple organ systems to effectively transport ox-
ygen from the air to the mitochondria of the working skeletal 

Figure 2. The multidimensional mechanisms associated with the deleterious effects of sedentary behavior and the beneficial effects of physical 
activity that occur within the mitochondria, skeletal muscle, myocardium, and conduit arteries. β-HAD indicates β-hydroxyacyl CoA dehydrogenase; 
AGE, advanced glycation end products; Akt, protein kinase B; CRP, C-reactive protein; FOXO3a, forkhead box O3;IL-6, interleukin-6; MHC, myosin 
heavy chain; MMP, matrix metalloproteinase; mTOR, mammalian target of rapamycin; MuRF-1, muscle RING-finger protein-1; NADPH, nicotinamide 
adenine dinucleotide phosphate; NO, nitric oxide; NOS, nitric oxide synthase; PGC-1α, peroxisome proliferator-activated receptor γ coactivator 1-α; PI3K, 
phosphoinositide 3-kinase; SERCA2a, sarcoplasmic reticulum calcium adenosine triphosphatase; and SIRT3; nicotinamide adenine dinucleotide-dependent 
deacetylase sirtuin-3 SOD.

Tjønna et al60 26 005 men; 27 537 
women

Self-reported PA Physically active individuals with CVD risk factors had a lower risk (HR, 0.76; 
95% CI, 0.61–0.95) compared with the inactive group with CVD risk factors.

Wisløff et al61 27 143 men; 28 929 
women

Self-reported PA Compared with those reporting no activity, a single weekly bout of high-
intensity exercise lowered risk of CVD death in men (0.61, 95% CI, 0.49–0.75) 
and women (0.49, 0.27–0.89).

No additional benefits when increasing duration or number of sessions per 
week.

Risk reduction increased with increasing age in men but not in women.

CHD indicates coronary heart disease; CVD, cardiovascular disease; HR, hazards ratio; PA, physical activity; and PAI, physical activity intelligence.

Table 1. Continued

Author Population PA Measurement Results
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muscle, which must produce the necessary energy to meet the 
demands of activity as well as effectively remove the result-
ant metabolic byproducts that impair the ability of the muscle 
to sustain activity when accumulated in excess. Considering 
the highly prognostic nature of CRF and its representation 
of the whole-body physiological function, its assessment has 
been used as the primary end point also in non-ET interven-
tions (ie, pharmacological) in HF patients. Pharmacological 
interventions, such as angiotensin-converting enzyme inhibi-
tors and sildenafil therapy in patients with HF with reduced 
ejection fraction (HFrEF) have been effective in significantly 
increasing CRF.138,139 Conversely, these pharmacological inter-
ventions have not been as effective in patients with HF with 
preserved ejection fraction (HFpEF), highlighting the need to 
develop nonpharmacological therapeutics, as also described 
in the next paragraphs. For example, HFpEF patients random-
ized to 24 weeks of phosphodiesterase-5 inhibitor did not ex-
perience significant increases in CRF or clinical status when 
compared with placebo.140 Similarly, a 12-month intervention 
of daily spironolactone did not result in CRF improvement.141 
More recently, novel interventions aimed at enhancing the 
nitric oxide signaling pathway to increase its bioavailability 
have been tested in clinical trials. However, despite promising 
results in small pilot studies, a 4-week intervention of inhaled 
inorganic nitrite (a precursor to nitric oxide) did not improve 
CRF in patients with HFpEF.142 Although an effective pharma-
cological intervention to manage HFpEF has not been found, 
future studies are encouraged to continue to use CRF as a pri-
mary outcome of interest.

Among the traditional risk factors for CVD, CRF has con-
sistently shown to be one of the strongest prognosticators. A 
greater CRF in men with the metabolic syndrome protects a-
gainst all-cause and CVD mortality to similar to what is seen 
in healthy men.143 In addition to investigating the effects of 
CRF in patients with metabolic syndrome, the relation be-
tween CRF and obesity has also received much attention. As 
outlined by Kennedy et al,144 the independent effects of fitness 

versus fatness have been debated. Several of the authors of 
this review, as well as others, have evaluated the independent 
effects of excess adiposity (ie, obesity) and CRF on subse-
quent CVD and all-cause mortality.1–3,133,144–148 In fact, consid-
erable evidence indicates the high levels of CRF significantly 
attenuate or even eliminates the elevated risk of CVD- and all-
cause mortality in overweight and obese individuals. This has 
been reported in patients with dyslipidemia and T2DM as well 
as in the general population. Indeed, CRF markedly alters the 
relationship of fatness and subsequent prognosis. Recently, 
Barry et al146 performed a meta-analysis on 8 studies and 9 
independent groups to assess the joint impact of body mass 
index (BMI), a surrogate for increased adiposity, and CRF on 
CVD mortality. Unfit individuals had 2× to 3× higher mortal-
ity risk across all levels of BMI. Both overweight fit and obese 
fit had 25% and 42% increased mortality risk, respectively, 
compared with normal weight fit, which is considerably <2-
fold increased risk reported in overweight unfit individuals.

We have recently reviewed the impact of CRF on prog-
nosis in the obesity paradox, especially in CHD, HF, and a-
trial fibrillation.2,145,147–149 The obesity paradox describes the 
improved prognosis typically reported in epidemiological 
studies in patients with class I and II obesity compared with 
normal weight and underweight individuals in the setting of 
established CVD, particularly CHD, HF, and more recently 
atrial fibrillation. In a study of 9563 patients with CHD fol-
lowed for an average of over 13 years, those in the bottom ter-
tile of CRF based on age and sex showed an obesity paradox. 
In fact, in this group of unfit individuals, measures of adipos-
ity, such as higher BMI, % body fat, and waist circumference, 
were associated with improved prognosis compared with the 
thinner but similarly unfit individuals.150 However, the rela-
tively fit CHD patients (not in the bottom tertile for age- and 
sex-based CRF) had an excellent prognosis that was similar 
in all groups of adiposity, suggesting that increased BMI, % 
body fat, and waist circumference were no longer protective in 
the setting of preserved or increased CRF. Similarly, in 2066 
patients with HFrEF,151 those individuals with reduced CRF 
defined as peak VO

2
 <14 mL/kg per minute and with concom-

itant obesity presented a more favorable prognosis compared 
with normal weight individuals. However, an obesity paradox 
was not reported in those patients with a relatively preserved 
CRF (peak VO

2
 ≥14 mL/kg per minute), suggesting that in pa-

tients with HF, obesity may only be protective in the setting of 
reduced CRF and that perhaps therapeutics aiming at improv-
ing CRF in patients with HF may result in greater benefits as 
compared to those targeting body weight alone. In addition to 
CHD and HF, CRF levels and related improvements over time 
have been associated with markedly improved prognosis also 
in patients with atrial fibrillation.149,152

A recent study from Norway (HUNT study [The Nord-
Trøndelag Health Study]) also demonstrated that PA levels 
were stronger predictors of survival compared with BMI.153 In 
fact, while changes in PA markedly impacted mortality, with 
increased PA levels associated with an improved prognosis, 
changes in BMI, including weight loss, did not affect mortal-
ity rate.154 Taken together, these data support the importance 
of increased CRF and PA to reduce CVD- and all-cause mor-
tality risks, independent of obesity.

Table 2. Potential Benefits of Physical Activity, Exercise Training, and 
Cardiorespiratory Fitness on Prognosis

Physiological Benefits

Reduced blood pressure109 Reduced systemic inflammation110

Improved heart rate variability111 Decreased myocardial oxygen 
demands112

Improved endothelial function113 Maintain lean mass114

Improved insulin sensitivity115 Reduced visceral adiposity116

Reduced myocardial infarction117 Increased capillary density118

Reduced blood and plasma 
viscosity119

Improved mood and psychological 
stress120

Increased mitochondrial density79 Improved sleep121

Reduced risk of developing

 Hypertension122 Osteoporosis123

 Depression124 Osteoarthritis125

 Metabolic syndrome126 Dementia and Alzheimer Disease127

 Diabetes mellitus128 Breast, colon, and other cancers129
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Importance of Exercise in HF
Currently, over 6 million adults have been diagnosed with HF 
and more sobering is the projected increase to over 8 million 
by the year 2030.155 Among elderly individuals, HF-related 
exacerbations is the most common cause for hospitalization, 
placing a significant burden on individuals as well as the 
health care system. Exercise intolerance, typically defined as 
reduced CRF, is the major symptom in patients with HF.156,157 
As described above, increasing PA and ET remain the most 
effective therapeutic strategies to improve CRF.1,158 ET in-
duces improvements in CRF typically objectively assessed 
with peak VO

2
 during a maximal cardiopulmonary exercise 

test159,160 in a wide spectrum of HF phenotypes,161 including 
HFrEF162 and HFpEF.163 The effects of ET on CRF have been 
tested in several small randomized controlled trials and sup-
ported by meta-analyses suggesting beneficial effects of ET 
on clinical outcomes.164,165 However, the majority of these 
studies were performed in a single-center and limited by the 
small sample size, making them likely unpowered to detect 
meaningful improvements in strong clinical outcomes (eg, all-
cause mortality and HF hospitalizations).

The largest randomized controlled trial testing the effi-
cacy and safety of ET on clinical outcomes is the multicenter 
HF-ACTION (Heart Failure: A Controlled Trial Investigating 
Outcomes of Exercise Training), which randomized >2300 
stable patients with HFrEF (LVEF ≤35%) with New York 
Heart Association class II to IV to 36 supervised sessions 
of aerobic ET and home-based ET in addition to standard 
of care or to standard of care alone.162 After a median fol-
low-up of about 30 months, patients randomized to the ET 
group experienced a modest 4% improvement in peak VO

2
162 

which was lower than the anticipated 10% to 15% suggested 
by the smaller studies.166 One of the reasons for the small 
improvement in CRF was perhaps the low adherence to the 
prescribed ET, with only 30% of patients achieving the tar-
geted level of ET in terms of recommended minutes/wk.162 
Nevertheless, the ET training failed to reduce the risk for 
the primary composite end point of all-cause mortality and 
all-cause hospitalizations. However, after prespecified statis-
tical adjustments for key prognostic factors of morbidity, ET 
was associated with a significant 13% relative risk reduction 
for the primary composite end point as well as a 15% rela-
tive risk reduction for the composite secondary end point of 
CVD mortality and HF hospitalizations.162 A secondary anal-
ysis of the trial also suggested a greater reduction for the pri-
mary and secondary composite end points in those patients 
who achieved the targeted goal of weekly ET which was also 
consistent with a greater improvement in CRF reported in 
this subgroup.167 Importantly, ET was safe as the number of 
adverse events did not differ between the intervention and 
control groups.162 Clearly, the HF-ACTION has added im-
portant information on the beneficial effects of ET, however, 
those were limited to HF patients with an LVEF ≤35%, and 
to date similar large multicenter studies in HFpEF, or even 
in HFrEF but with LVEF ≥35%, are lacking and, in fact, 
highly encouraged, perhaps this time with the use of addi-
tional tools to improve adherence to ET during the course of 
the study.168 Nevertheless, ET seems to exert similar, if not 
even greater benefit, at least on CRF, in patients HFpEF.163

The improvements in CRF following ET in the differ-
ent forms of HF seems to result from a variety of mecha-
nisms.160,169 Peak VO

2
, typically reported in a milliliter of 

oxygen consumption per kilogram of body weight per minute 
(mL/kg per minute), following the Fick principle results from 
the product of cardiac output and arteriovenous oxygen differ-
ence [C(a−v)O

2
], which is clearly also affected by hemoglobin 

concentrations:
Peak VO

2
=(stroke volume×heart rate)

max
×[C(a−v)O

2
]

max

ET can, therefore, improve CRF (ie, peak VO
2
) by affect-

ing one or more of these variables.
In patients with HFrEF, in which the effects of ET have 

been investigated the most compared with HFpEF, the ET-
induced changes in CRF have been associated with a com-
bination of improvements in cardiac factors and peripheral 
noncardiac factors,170 measured using both invasive and non-
invasive assessments. In patients with HFrEF, ET can improve 
systolic function (ie, LVEF) and cardiac remodeling, by re-
ducing LV end-diastolic volume and LV end-systolic vol-
ume,171 finally resulting in improved peak cardiac output.172 
Importantly, the improvement in CRF induced by ET also 
result from improvements in peripheral factors, particularly 
an increase in systemic arterial-venous oxygen difference, leg 
blood flow, and oxygen delivery.172 Such effects are typically 
independent of changes in body weight, which highlights 
the importance of targeting CRF in HFrEF, independent of 
changes in body mass.

In addition to ET, several pharmacological strategies have 
also shown improvements in CRF in HFrEF173 leading to 
larger CVD outcomes trials investigating the effects on clini-
cal outcomes of such therapies. However, as described in the 
prior sections of this review, several failures in HFpEF have 
been reported in the last years as well as many efficacy, de-
sign, and ethical issues that have been associated with explor-
ing advanced therapies that involve stem cell interventions.174 
Such disappointing results have increased the attention on the 
effects of ET in this population. Indeed, ET alone is perhaps 
the most powerful tool to improve CRF in HFpEF, particu-
larly when combined with weight loss strategies (ie, caloric 
restriction) in patients with concomitant obesity.175 The mech-
anisms of improvements in CRF mediated by ET, however, 
differ significantly from what described previously in HFrEF. 
A meta-analysis of 6 randomized controlled trials investigat-
ing the effects of ET in HFpEF found that ET improves CRF 
but without significantly affecting cardiac systolic and dias-
tolic function.163 Such results suggest that noncardiac limi-
tations may be major contributors for exercise intolerance 
in HFpEF. Few studies have confirmed that ET training im-
proves CRF in older patients with HFpEF176 but without in-
ducing significant changes in resting and peak cardiac output 
and cardiac index, proposing improvements in peak C(a−v)
O

2
 as major contributors for improved CRF in this popula-

tion.171 Prior small studies, however, have shown some degree 
of improvements in cardiac diastolic function in patients with 
HFpEF.177 Clearly, the lack of a universal definition of HFpEF 
plays a major role in determining potential improvements in 
cardiac versus noncardiac factor, or perhaps a combination 
of both. The presence of cardiac diastolic dysfunction, par-
ticularly when assessed invasively and during exercise,178–181 
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may identify those patients in which ET could affect cardiac 
function to a greater degree compared with those who have 
been diagnosed with HFpEF, but without meeting major di-
astolic dysfunction criteria for the initial HFpEF diagnosis.182 
HFpEF is a highly heterogeneous population, to the extent 
that different phenotypes of HFpEF have been proposed in 
the literature.183 Individuals that gain weight over time have 
been shown to have increased diastolic stiffening,184,185 which 
may partly explain the high prevalence of obesity found in 
patients with HFpEF (Figure 3). Obese HFpEF patients have 
an increased plasma volume, greater degree of concentric LV 
remodeling and right ventricular dilation, more right ventric-
ular dysfunction,186 higher biventricular fillings pressures dur-
ing exercise, and lower CRF compared with nonobese HFpEF 
and control individuals.187 ET has been proven to be effective 
in most phenotypes and subgroups, more recently also the in 
patients with HFpEF who also have class II and III obesity,175 
which represent one of the most common comorbid condition 
in this population and in which adiposity188,189 and peripheral 
noncardiac factors176 have been recognized as major determi-
nants of reduced CRF. Initiating ET before the development 
of HFpEF would certainly be an effective way to reverse the 
deleterious effects of a sedentary lifestyle.190

Patients with HF are also characterized by reduced sub-
jective assessment of quality of life, typically measured using 
validated questionnaires.191 ET is an effective strategy to im-
prove quality of life in both HFrEF192 and HFpEF,193 further 
supporting the importance of its implementation in the care of 
patients with HF.193

Importance of Exercise in Muscular Fitness
Body composition compartments play a central role in deter-
mining CRF.189,194–196 Particularly, the levels of lean mass (LM) 
of the extremities (ie, appendicular LM) are considered the 
best surrogate for appendicular skeletal muscle mass,197 ma-
jor determinant of CRF.198 In addition to the amount of LM, 
its composition and functionality are also important. Recently, 

the ratio between intermuscular fat and skeletal muscle mass 
area assessed with magnetic resonance imaging was found to 
be the strongest predictor for exercise intolerance in patients 
with HFpEF.194 Furthermore, when a reduced amount of LM is 
associated with reduced functionality, patients typically pre-
sent with sarcopenia,197 which has been associated with worse 
CRF and outcomes in several chronic diseases, recently also 
in HF.199 When sarcopenia is coupled with excess adiposity 
(ie, obesity), it can be defined as sarcopenic obesity, which 
is associated with an even worse CRF compared with sarco-
penia alone.189,200,201 For such reasons, preserving or perhaps 
even increasing LM with resistance training in association 
with aerobic exercise may represent the most effective ther-
apeutic strategy to improve muscular fitness in the setting of 
HF.202,203 This may be particularly true in older adults, in which 
LM loss occurs physiologically, therefore, increasing the risk 
of sarcopenia and sarcopenic obesity, but also in the more ad-
vanced stages of HF, which are characterized by the presence 
of a systemic catabolic state responsible for the loss of LM, 
often associated with concomitant loss of FM, which is, when 
unintentional, a critical negative prognostic factor in HF.203,204 
Randomized trials testing these hypotheses and also investi-
gating the intensity of the resistance ET in association with 
more established protocols involving aerobic ET are clearly 
needed.

Exercise Dosing
There continues to be considerable controversy about the opti-
mal dose of PA/ET for CVD and general prevention; however, 
substantial evidence suggests that any level of PA/ET is better 
than none.1–3,133,205 Physical Activity Federal Guidelines call 
for a minimum of 150 minutes per week of moderate aerobic 
PA or 75 minutes per week of vigorous PA, while the Institute 
of Medicine suggests that 60 minutes daily of total PA is i-
deal.1,2,7,19,160 The majority of the general population does not 
meet these guidelines, with only 10% meeting these minimum 
recommend level of PA using objective assessments, such as 

Figure 3. Proposed mechanisms by which obesity can contribute towards the development and progression of heart failure with preserved ejection 
fraction (HFpEF). BNP indicates B-type natriuretic peptide; CV, cardiovascular; LV, left ventricular; and RV, right ventricular. Adapted from Pandey et al184 with 
permission. Copyright ©2018, Elsevier.
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accelerometers.1,2,206,207 However, recent evidence indicates 
substantial benefits even with ET doses much lower than what 
recommended in these guidelines.

In a large study of 416 175 individuals from Taiwan, Wen et 
al59 noted a dose-response relationship between aerobic PA and 
subsequent mortality, with some mortality reductions noted 
with just 15 minutes per day of moderate PA (Figure 4). In fact, 

progressive reductions in mortality were noted up to ≤90 daily 
minutes of moderate PA and ≤30 to 40 minutes of vigorous PA, 
which was defined as only 6.5 to 8.5 METs. In a recent large 
running study from 55 000 people from the Aerobics Center 
Longitudinal Study, including 13 000 runners and 42 000 non-
runners, who were followed on average for nearly 15 years, 
runners had impressive reductions in mortality and CVD mor-
tality by 30% and 45%, respectively, compared with nonrun-
ners, with an average increase in life expectantly and CVD life 
expectancy of 3 and 4.1 years, respectively.27 Persistent run-
ners had the full benefits, while those who had stopped run-
ning or started running during the study had nearly half the 
benefits compared with never runners. These results are not 
unexpected, and many would believe that there are benefits of 
running but also there may be selection bias, in that those able 
to run may be healthier than nonrunners.

However, interesting findings emerge when assessing run-
ning dosing, by dividing runners into quintiles (Q) of exer-
cise volumes, such as miles per week, times per week and 
minutes per week. In fact, Q1 runners (<6 miles per week, 
1–2 times per week, and <51 minutes per week) had simi-
lar all-cause and CVD-mortality risks compared with Q2–Q4 
runners, with a slight trend to lower mortality to Q5 runners 
(Figure 5).27 These results suggest that weekly running, which 
is often considered to be a relatively high intensity form of 

Figure 4. Daily physical activity duration and all-cause mortality 
reduction. Reprinted from Wen et al59 with permission. Copyright ©2011, 
Elsevier.

Figure 5. Hazard ratios (HRs) of all-cause and cardiovascular mortality by running characteristic (weekly running time, distance, frequency, total 
amount, and speed). Participants were classified into 6 groups: nonrunners (reference group) and 5 quintiles of each running characteristic. All HRs were 
adjusted for baseline age (y), sex, examination year, smoking status (never, former, or current), alcohol consumption (heavy drinker or not), other physical 
activities except running (0, 1–499, or ≥500 metabolic equivalent [MET] minutes/wk), and parental history of cardiovascular disease (yes or no). All P values 
for HRs across running characteristics were <0.05 for all-cause and cardiovascular mortality except for running frequency of ≥6 times/wk (P=0.11) and speed 
of <6.0 miles per hour (P=0.10) for cardiovascular mortality. Reprinted from Lee et al27 with permission. Copyright ©2014, Elsevier.
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ET that is common and convenient, the maximal benefits on 
all-cause and CVD-mortality occurred at low doses, including 
ET doses well below the current International PA guidelines. 
In a subsequent analysis of the Q5 runners who were divided 
into tertiles, the top 8% of runners with regards to dosing ap-
peared to lose the benefits, at least compared with the lower 
dose runners (Figure 6),208 suggesting that more may not be 
better but also raising the possibility that more could be worse 
with regard to ET dosing.

Future Considerations
Although the benefits of PA/ET and deleterious effects of SB/
PI are well established, further study on potential benefits 

of ET on major clinical events in HFpEF, T2DM, and other 
chronic diseases is needed. Similarly, the relative values of 
high-intensity interval training and resistance training on ma-
jor clinical events in these populations may also need further 
investigation.209 Additionally, much of our limited understand-
ing of the mechanistic consequences of SB derives from pre-
clinical models and cross-sectional examinations of sedentary 
individuals. Efforts have recently been made to characterize 
the effects of prolonged acute (ie, hours) sitting on metabolic 
parameters such as postprandial glucose and insulin responses, 
however, no study has examined the cellular and molecular re-
sponses in various tissues across different populations and PA 
status. Another area that warrants attention is elucidating the 

Figure 6. Hazard ratios (HRs) of all-cause and cardiovascular disease (CVD) mortality by weekly running time, distance, frequency, and total 
amount. Participants were classified into 8 groups: nonrunners and 5 quintiles of each running dose (Q1–Q5) with the last quintile (Q5) additionally 
categorized into 3 tertiles (Q5-T1, Q5-T2, and Q5-T3) using larger markers (7 groups for running frequency because of limited numbers in ≥7 times/wk). 
All HRs were adjusted for baseline age (y), sex, examination year, smoking status (never, former, or current), alcohol consumption (heavy drinker or not), 
other physical activities except running (0, 1–499, or ≥500 metabolic equivalent task minutes per week [MET min/wk]), and parental CVD (yes or no). The 
number of participants (number of all-cause deaths) were 42 121 (2857), 2710 (110), 2584 (116), 2505 (103), 2647 (112), 850 (33), 822 (30), and 898 (52) in the 
corresponding 8 running time groups from nonrunners to Q5-T3; 42 121 (2857), 2626 (105), 2473 (120), 2961 (123), 2218 (92), 885 (36), 1027 (40), and 826 (40) 
in running distance; 42 121 (2857), 2757 (62), 3076 (105), 2817 (131), 2500 (143), 1215 (66), and 651 (49) in running frequency; and 42 121 (2857), 2609 (109), 
2598 (122), 2558 (116), 2626 (105), 863 (31), 886 (30), and 876 (43) in total running amount. The number of participants (number of CVD deaths) were 40 319 
(1055), 2628 (28), 2501 (33), 2435 (33), 2567 (32), 827 (10), 801 (9), and 863 (17) in the corresponding 8 running time groups from nonrunners to Q5-T3; 40 319 
(1055), 2550 (29), 2386 (33), 2874 (36), 2156 (30), 858 (9), 1001 (14), and 797 (11) in running distance; 40 319 (1055), 2714 (19), 2993 (22), 2725 (39), 2396 
(39), 1174 (25), and 620 (18) in running frequency; and 40 319 (1055), 2531 (31), 2508 (32), 2477 (35), 2553 (32), 842 (10), 864 (8), and 847 (14) in total running 
amount. The bars indicate 95% CIs, and HRs appear next to the bars. Reprinted from Lee et al208 with permission. Copyright ©2016, Elsevier.
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high degree of interindividual variation in CRF responses to 
exercise interventions. Ross et al103 have made great strides in 
addressing the influence of amount and intensity on CRF out-
comes, however, there still remains a large gap in identifying 
molecular characteristics that may provide insight into who 
responds or does not respond to exercise. Finally, we should 
recognize that the PA/ET fields of medicine have not done an 
excellent job of promoting PA/ET throughout the world and 
in many diseases, including the patients with CVD.However, 
we highly encourage research investigating novel strategies to 
improve adherence to the recommendations described above, 
finally resulting in increased PA/ET and reduced SB/PI across 
the globe.2,210

Conclusions
In this State-of-the-Art review, we discussed the potential 
benefits of PA/ET and the adverse effects of SB/PI in the 
primary and secondary prevention of chronic diseases, espe-
cially CVD. The constellation of data reviewed in this article 
marked the benefits of increased PA/ET, particularly as they 
lead to increased CRF, finally resulting in improved prognosis 
in a large spectrum of metabolic diseases and CVD. Greater 
implementation of this therapy, therefore, is desperately need-
ed worldwide.
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