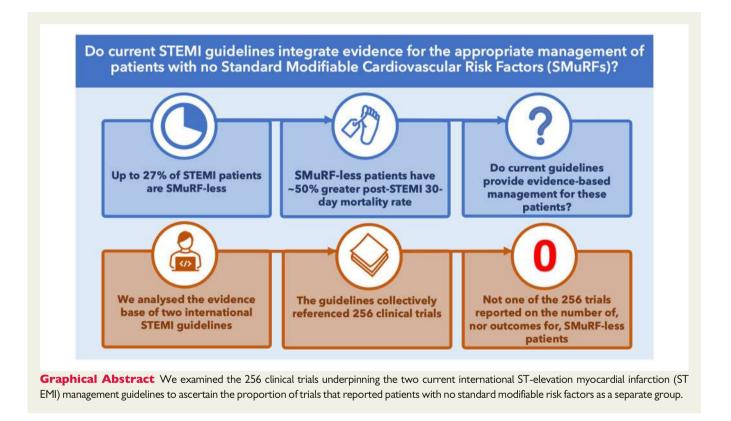
VIEWPOINT



Coronary artery disease in the absence of traditional risk factors: a call for action

Suzanne R. Avis (1) 1,2, Stephen T. Vernon (1) 1, Emil Hagström (1) 3, and Gemma A. Figtree 1,4*

¹Cardiovascular Discovery Group, Kolling Institute and University of Sydney Northern Clinical School, Faculty of Medicine and Health, Level 12, Building 6, Royal North Shore Hospital. St Leonard's NSW 2065. Australia; ²Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania Sydney Campus. Glover St, Lilyfield, NSW 2040, Australia; ³Department of Medical Sciences, Uppsala University, Uppsala Clinical Research Centre, Dag Hammarskjölds väg 38, 751 85 Uppsala, Sweden; and ⁴Department of Cardiology, Royal North Shore Hospital, Reserve Road, St Leonard's, NSW 2065, Australia

Received 1 April 2021; revised 2 June 2021; editorial decision 1 July 2021; accepted 7 July 2021; online publish-ahead-of-print 22 July 2021

The key role of hypertension, hypercholesterolaemia, diabetes mellitus, and smoking in causing coronary artery disease (CAD) has been well-recognized at a population level and has been the target of highly effective primary and secondary prevention strategies for over 50 years. However, a substantial, and increasing, proportion of patients presenting with life-threatening acute coronary syndrome (ACS) have none of these standard modifiable cardiovascular risk

factors (SMuRFs). $^{1.2}$ A meta-analysis of 14 clinical trials utilizing individual patient level data for 122 458 patients reported that 17% of coronary heart disease patients had no SMuRFs, 3 a proportion similar to the 15% we recently reported in 62 048 ST-elevation myocardial infarction (STEMI) patients in the SWEDEHEART Registry. 4 We have observed the proportion to be increasing in two separate Australian STEMI cohorts from \sim 14% to as high as 27% over

Viewpoint 3823

Table I Coronary artery disease risk factors reported in controlled clinical trials referenced in the 2017 European Society of Cardiology and 2013 American College of Cardiology/American Heart Association ST-elevation myocardial infarction management guidelines

	Unique to 2017 ESC STEMI guideline	Unique to 2013 ACC/ AHA STEMI guideline	Common to both ESC 2017 and ACC/AHA 2013 STEMI guidelines	Total
Clinical trials, n	109	99	48	256
Trials that reported participants by, n (%)				
Hypertension	94 (86)	82 (83)	43 (90)	219 (86)
Diabetes mellitus	96 (88)	83 (84)	42 (88)	221 (86)
Tobacco use	77 (71)	73 (74)	34 (71)	184 (72)
Hypercholesterolaemia	66 (61)	56 (57)	26 (54)	148 (58)
No risk factors ^a	0 (N/A)	0 (N/A)	0 (N/A)	0 (N/A)

ACC/AHA, American College of Cardiology/American Heart Association; ESC, European Society of Cardiology; N/A, not available; STEMI, ST-elevation myocardial infarction. aln one study (Sabatine et al. 10), the proportion of SMuRF-less patients could be calculated from other reported data; however, it was not explicitly reported, nor were any trial outcomes reported separately.

10 years. ^{5.6} Whilst this remains a relatively small proportion of the 'pie', the global burden of CAD makes their absolute number substantial, estimated conservatively to impact 29.6 million, and to account for 1.4 million deaths per annum. ⁷ Despite this, SMuRF-less CAD patients appear to be an invisible group in current clinical trials and guidelines, with little known about their outcomes or the best approach to their management and secondary prevention strategies. Our recent finding that SMuRF-less STEMI patients have an almost 50% higher 30-day mortality rate than their counterparts with SMuRFs highlights the importance of establishing evidence for their management. ⁴

We sought to ascertain the extent to which current international guidelines for the management of STEMI integrate evidence for the appropriate clinical management of STEMI patients who have developed coronary atherosclerosis despite no SMuRFs. We assessed both the European Society of Cardiology (ESC) and the American College of Cardiology/American Heart Association (ACC/AHA) guidelines, to determine the proportion of trials underpinning the guideline recommendations that reported the number or percentage of participants with no SMuRFs.^{8,9}

Combined, the ESC and ACC/AHA STEMI guidelines reference a total of 1133 studies, with 256 of these being clinical trials. For each of these 256 trials, we assessed for the reporting of number/percentage of participants with each of the SMuRFs (hypertension, smoking, hypercholesterolaemia, and diabetes mellitus). We next assessed if the number/percentage of participants with none of these risk factors was reported. As shown in Table 1, diabetes mellitus (86%) and hypertension (86%) were the most commonly reported risk factors in these trials, followed by smoking (72%) and hypercholesterolaemia (58%). It is important to acknowledge that the number/proportion of patients with no risk factors cannot be derived even if the number of patients with each of the four SMuRFs is reported, as many patients will have more than one risk factor. In contrast to the reporting of each of the individual risk factors, not one study of the 256 clinical trials explicitly reported the proportion of patients with no risk factors. A single trial from Sabatine et al. 10 reported the proportion of participants that had 'any' risk factor, and therefore, the proportion of those

who had no risk factors could be derived. Not surprisingly given our findings, no study reported any trial outcome specifically for this group either in primary or secondary analyses (*Graphical abstract*).

The invisibility of SMuRFless CAD patients in guidelines or in the clinical trials that the guidelines are derived from means the outcomes and specific challenges regarding secondary prevention for this group have not been adequately addressed. Many of the drugs in our armament for secondary prevention have been developed to target specific risk factors but are frequently applied in guidelines in a manner agnostic to these features. The most obvious examples are the use of statins vs. hypercholesterolaemia, and the angiotensinconverting enzyme inhibitor (ACEI)/angiotensin receptor blocker (ARB) family initially developed to target high blood pressure. It is feasible that the beneficial effects of these agents may be attenuated in those whose atherosclerosis has developed in the absence of high cholesterol or high blood pressure. However, both of these pivotal medication classes are recognized to have potential 'off target' benefits—directly on endothelial function and plaque stability in the case of statins, and on redox- and inflammatory-mediated vascular and myocardial pathophysiology in the case of ACEI/ARBs. 11,12

It is feasible that a proportion of the SMuRF-less CAD group are simply individuals whose atherosclerotic disease progression has been 'missed'; the remainder are likely to be heterogeneous with regard to underlying biology, and pathways may encompass inflammatory processes, environmental exposures, and interactions with chronic conditions such as chronic kidney disease and autoimmune diseases. There is a growing body of literature regarding emerging risk tools such as polygenic risk scores and multi-*omic* signatures as well as lipoprotein (a) and C-reactive protein novel markers of risk that may be relevant to SMuRF-less ACS patients; however, these biomarkers are not routinely utilized in primary prevention cardiovascular risk scores. ^{13,14} Genome-wide association studies and Mendelian randomization analyses may prove useful in eliciting markers of risk and underlying pathological processes. ¹⁵

In addition to potentially distinct pathophysiological processes, SMuRF-less CAD patients have specific challenges regarding

3824 Viewpoint

adherence to secondary prevention guidelines that have been observed in the large SWEDEHEART Registry and the Canadian GRACE cohort.^{2,4} This lower rate of statin, ACEI/ARB, and ß-blocker therapy prescription early post STEMI appears to mediate at least some of the excess mortality in SMuRF-less STEMI patients.⁴

Despite the tremendous progress that has been made in the evidence-based management of CAD and ACS, our findings demonstrate that current ACS guidelines do not specifically address the management of patients who develop coronary atherosclerosis in the absence of traditional risk factors. Improved visibility of this SMuRF-less CAD population in future trials, especially those trials examining novel risk factors, together with dedicated secondary analyses and meta-analyses using individual patient level data from existing clinical trials may provide important insights to guide clinical pathways and guidelines for these vulnerable patients.

Conflict of interest: G.A.F. reports grants from National Health and Medical Research Council (Australia), personal fees from CSL, and grants from Abbott Diagnostic during the conduct of the study. G.A.F. has a patent to 'Patent Biomarkers and Oxidative Stress' awarded USA May 2017 (US9638699B2) licenced, a patent to 'Use of P2X7R antagonists in cardiovascular disease' PCT/AU2018/050905 licenced, and a patent to 'Methods for treatment and prevention of vascular disease' PCT/AU2015/000548 licenced. E.H. reports grants and personal fees from Amgen and Sanofi and personal fees from Bayer and NovoNordisk, outside the submitted work. S.T.V. has no interests to declare.

Data availability

The original data for this study are managed by the Kolling Institute and the University of Sydney and can be made available through contacting the corresponding author and engaging in a formal research application.

References

- Canto JG, Kiefe CI, Rogers WJ, Peterson ED, Frederick PD, French WJ, Gibson CM, Pollack CV, Ornato JP, Zalenski RJ, Penney J, Tiefenbrunn AJ, Greenland P; NRMI Investigators. Number of coronary heart disease risk factors and mortality in patients with first myocardial infarction. JAMA 2011; 306: 2120–2127.
- Wang JY, Goodman SG, Saltzman I, Wong GC, Huynh T, Dery J-P, Leiter LA, Bhatt DL, Welsh RC, Spencer FA, Fox KAA, Yan AT; Canadian Registry of Acute Coronary Events (CANRACE) Investigators. Cardiovascular risk factors and inhospital mortality in acute coronary syndromes: insights from the Canadian Global Registry of Acute Coronary Events. Can | Cardiol 2015;31:1455–1461.:
- Khot UN, Khot MB, Bajzer CT, Sapp SK, Ohman EM, Brener SJ, Ellis SG, Lincoff, AM, Topol EJ. Prevalence of conventional risk factors in patients with coronary heart disease. JAMA 2003;290:898–904.
- Figtree GA, Vernon ST, Hadziosmanovic N, Sundström J, Alfredsson J, Arnott C, Delatour V, Leósdóttir M, Hagström E. Mortality in STEMI patients without standard modifiable risk factors: a sex-disaggregated analysis of SWEDEHEART registry data. *Lancet* 2021;397:1085–1094.
- Vernon ST, Coffey S, Bhindi R, Soo Hoo SY, Nelson GI, Ward MR, Hansen PS, Asrress KN, Chow CK, Celermajer DS, O'Sullivan JF, Figtree GA. Increasing proportion of ST elevation myocardial infarction patients with coronary atherosclerosis poorly explained by standard modifiable risk factors. Eur J Prev Cardiol 2017; 24:1824–1830.
- Vernon ST, Coffey S, D'Souza M, Chow CK, Kilian J, Hyun K, Shaw JA, Adams M, Roberts-Thomson P, Brieger D, Figtree GA. ST-segment-elevation myocardial infarction (STEMI) patients without standard modifiable cardiovascular risk factors—how common are they, and what are their outcomes? J Am Heart Assoc 2019;8:e013296.
- 7. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, Barengo NC, Beaton AZ, Benjamin EJ, Benziger CP, Bonny A, Brauer M,

Brodmann M, Cahill TJ, Carapetis J, Catapano AL, Chugh SS, Cooper LT, Coresh J, Criqui M, DeCleene N, Eagle KA, Emmons-Bell S, Feigin VL, Fernández-Solà J, Fowkes G, Gakidou E, Grundy SM, He FJ, Howard G, Hu F, Inker L, Karthikeyan G, Kassebaum N, Koroshetz W, Lavie C, Lloyd-Jones D, Lu HS, Mirijello A, Temesgen AM, Mokdad A, Moran AE, Muntner P, Narula J, Neal B, Ntsekhe M, Moraes de Oliveira G, Otto C, Owolabi M, Pratt M, Rajagopalan S, Reitsma M, Ribeiro ALP, Rigotti N, Rodgers A, Sable C, Shakil S, Sliwa-Hahnle K, Stark B, Sundström J, Timpel P, Tleyjeh IM, Valgimigli M, Vos T, Whelton PK, Yacoub M, Zuhlke L, Murray C, Fuster V; GBD-NHLBI-JACC Global Burden of Cardiovascular Diseases Writing Group. Global burden of cardiovascular diseases and risk factors, 1990–2019. *J Am Coll Cardiol* 2020;**76**:2982–3021.

- 8. Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H, Caforio ALP, Crea F, Goudevenos JA, Halvorsen S, Hindricks G, Kastrati A, Lenzen MJ, Prescott E, Roffi M, Valgimigli M, Varenhorst C, Vranckx P, Widimský P, ESC Scientific Document Group. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J 2018;39:119–177.
- O'Gara PT, Kushner FG, Ascheim DD, Casey DE, Chung MK, de Lemos JA, Ettinger SM, Fang JC, Fesmire FM, Franklin BA, Granger CB, Krumholz HM, Linderbaum JA, Morrow DA, Newby LK, Ornato JP, Ou N, Radford MJ, Tamis-Holland JE, Tommaso CL, Tracy CM, Woo YJ, Zhao DX Jr. ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2013;61:e78—e140.
- Sabatine MS, Giugliano RP, Wiviott SD, Raal FJ, Blom DJ, Robinson J, Ballantyne CM, Somaratne R, Legg J, Wasserman SM, Scott R, Koren MJ, Stein EA; Open-Label Study of Long-Term Evaluation against LDL Cholesterol (OSLER) Investigators. Efficacy and safety of evolocumab reducing lipids and cardiovascular events. N Engl J Med 2015;372:1500–1509.
- Oesterle A, Liao JK. The pleiotropic effects of statins—from coronary artery disease and stroke to atrial fibrillation and ventricular tachyarrhythmia. Curr Vasc Pharmacol 2019;17:222–232.
- Guzik TJ, Touyz RM. Oxidative stress, inflammation, and vascular aging in hypertension. Hypertension 2017;70:660–667.
- 13. Voight BF, Peloso GM, Orho-Melander M, Frikke-Schmidt R, Barbalic M, Iensen MK, Hindy G, Hólm H, Ding EL, Johnson T, Schunkert H, Samani NJ, Clarke R, Hopewell IC. Thompson IF, Li M. Thorleifsson G, Newton-Cheh C, Musunuru K. Pirruccello JP, Saleheen D, Chen L, Stewart AFR, Schillert A, Thorsteinsdottir U, Thorgeirsson G, Anand S, Engert JC, Morgan T, Spertus J, Stoll M, Berger K, Martinelli N, Girelli D, McKeown PP, Patterson CC, Epstein SE, Devaney J, Burnett M-S, Mooser V, Ripatti S, Surakka I, Nieminen MS, Sinisalo J, Lokki M-L, Perola M, Havulinna A, de Faire U, Gigante B, Ingelsson E, Zeller T, Wild P, de Bakker PIW, Klungel OH, Maitland-van der Zee A-H, Peters BJM, de Boer A, Grobbee DE, Kamphuisen PW, Deneer VHM, Elbers CC, Onland-Moret NC, Hofker MH, Wijmenga C, Verschuren WMM, Boer JMA, van der Schouw YT, Rasheed A. Frossard P. Demissie S. Willer C. Do R. Ordovas IM. Abecasis GR. Boehnke M, Mohlke KL, Daly MJ, Guiducci C, Burtt NP, Surti A, Gonzalez E, Purcell S, Gabriel S, Marrugat J, Peden J, Erdmann J, Diemert P, Willenborg C, König IR, Fischer M, Hengstenberg C, Ziegler A, Buysschaert I, Lambrechts D, Van de Werf F, Fox KA, El Mokhtari NE, Rubin D, Schrezenmeir J, Schreiber S, Schäfer A, Danesh J, Blankenberg S, Roberts R, McPherson R, Watkins H, Hall AS, Overvad K, Rimm E, Boerwinkle E, Tybjaerg-Hansen A, Cupples LA, Reilly MP. Melander O. Mannucci PM. Ardissino D. Siscovick D. Elosua R. Stefansson K. O'Donnell CJ, Salomaa V, Rader DJ, Peltonen L, Schwartz SM, Altshuler D, Kathiresan S. Plasma HDL cholesterol and risk of myocardial infarction: a Mendelian randomisation study. Lancet 2012;380:572-580.
- 14. Burgess S, Ference BA, Staley JR, Freitag DF, Mason AM, Nielsen SF, Willeit P, Young R, Surendran P, Karthikeyan S, Bolton TR, Peters JE, Kamstrup PR, Tybjærg-Hansen A, Benn M, Langsted A, Schnohr P, Vedel-Krogh S, Kobylecki CJ, Ford I, Packard C, Trompet S, Jukema JW, Sattar N, Di Angelantonio E, Saleheen D, Howson JMM, Nordestgaard BG, Butterworth AS, Danesh J; European Prospective Investigation Into Cancer and Nutrition–Cardiovascular Disease (EPIC-CVD) Consortium. Association of LPA variants with risk of coronary disease and the implications for lipoprotein(a)-lowering therapies: a Mendelian randomization analysis. JAMA Cardiol 2018;3:619–627.
- Vernon ST, Hansen T, Kott KA, Yang JY, O'Sullivan JF, Figtree GA. Utilizing stateof-the-art "omics" technology and bioinformatics to identify new biological mechanisms and biomarkers for coronary artery disease. *Microcirculation* 2019;26: e12488.