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Summary
Background Most patients who have heart failure with a reduced ejection fraction, when left ventricular ejection 
fraction (LVEF) is 40% or lower, are diagnosed in hospital. This is despite previous presentations to primary care with 
symptoms. We aimed to test an artificial intelligence (AI) algorithm applied to a single-lead ECG, recorded during 
ECG-enabled stethoscope examination, to validate a potential point-of-care screening tool for LVEF of 40% or lower.

Methods We conducted an observational, prospective, multicentre study of a convolutional neural network (known as 
AI-ECG) that was previously validated for the detection of reduced LVEF using 12-lead ECG as input. We used AI-
ECG retrained to interpret single-lead ECG input alone. Patients (aged ≥18 years) attending for transthoracic 
echocardiogram in London (UK) were recruited. All participants had 15 s of supine, single-lead ECG recorded at the 
four standard anatomical positions for cardiac auscultation, plus one handheld position, using an ECG-enabled 
stethoscope. Transthoracic echocardiogram-derived percentage LVEF was used as ground truth. The primary outcome 
was performance of AI-ECG at classifying reduced LVEF (LVEF ≤40%), measured using metrics including the area 
under the receiver operating characteristic curve (AUROC), sensitivity, and specificity, with two-sided 95% CIs. The 
primary outcome was reported for each position individually and with an optimal combination of AI-ECG outputs 
(interval range 0–1) from two positions using a rule-based approach and several classification models. This study is 
registered with ClinicalTrials.gov, NCT04601415.

Findings Between Feb 6 and May 27, 2021, we recruited 1050 patients (mean age 62 years [SD 17·4], 535 [51%] male, 
432 [41%] non-White). 945 (90%) had an ejection fraction of at least 40%, and 105 (10%) had an ejection fraction of 
40% or lower. Across all positions, ECGs were most frequently of adequate quality for AI-ECG interpretation at the 
pulmonary position (979 [93·3%] of 1050). Quality was lowest for the aortic position (846 [80·6%]). AI-ECG 
performed best at the pulmonary valve position (p=0·02), with an AUROC of 0·85 (95% CI 0·81–0·89), sensitivity 
of 84·8% (76·2–91·3), and specificity of 69·5% (66·4–72·6). Diagnostic odds ratios did not differ by age, sex, or 
non-White ethnicity. Taking the optimal combination of two positions (pulmonary and handheld positions), the rule-
based approach resulted in an AUROC of 0·85 (0·81–0·89), sensitivity of 82·7% (72·7–90·2), and specificity of 
79·9% (77·0–82·6). Using AI-ECG outputs from these two positions, a weighted logistic regression with l2 
regularisation resulted in an AUROC of 0·91 (0·88–0·95), sensitivity of 91·9% (78·1–98·3), and specificity of 80·2% 
(75·5–84·3).

Interpretation A deep learning system applied to single-lead ECGs acquired during a routine examination with an 
ECG-enabled stethoscope can detect LVEF of 40% or lower. These findings highlight the potential for inexpensive, 
non-invasive, workflow-adapted, point-of-care screening, for earlier diagnosis and prognostically beneficial treatment.

Funding NHS Accelerated Access Collaborative, NHSX, and the National Institute for Health Research.

Copyright © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.

Introduction 
The escalating worldwide burden of heart failure is 
compounded by late diagnosis, which both worsens 
patients’ prognoses and increases costs for health systems, 
primarily through avoidable hospital admissions.1–3 In the 
UK, the National Health Service (NHS) Long Term Plan 
emphasises this shortcoming in care, highlighting that 

“80% of heart failure is currently diagnosed in hospital, 
despite 40% of patients having symptoms that should 
have triggered an earlier assessment”.4 Among these 
patients, about 50% have heart failure with reduced 
ejection fraction, designated by an echocardiogram-derived 
left ventricular ejection fraction (LVEF) of 40% or lower.5 
The prognosis for this patient group continues to improve 
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with advancements in cost-effective drug and device 
therapies, where timely commencement maximises 
benefits.6–8 There is, therefore, an important unmet need 
for inexpensive and practical point-of-care screening for 
an LVEF of 40% or lower.

Through the application of artificial intelligence (AI), 
the 12-lead ECG has been described as an accurate digital 
biomarker for the stages of LVEF compromise. Previous 
research by the Mayo Clinic showed that a convolutional 
neural network (known as AI-ECG), trained on 12-lead 
ECGs labelled with corresponding echocardiogram-
derived LVEF, could detect LVEF of 35% or lower 
with 86·3% sensitivity and 85·7% specificity.9 This 
AI-ECG model has since been externally validated with 
12-lead ECGs in further midwestern (US) cohorts,10–12 and 
in a Russian population (sensitivity 80·8% and specificity 
67·3%).13 Most recently, a cluster randomised controlled 
trial made AI-ECG accessible for 12-lead ECG 
interpretation in a cohort of Mayo Clinic primary care 
practices, highlighting an increase in the diagnosis of 
LVEF of 50% or lower (odds ratio [OR] 1·32 (1·01–1·61).14

The emergence of ECG-enabled stethoscopes, 
capable of recording single-lead ECGs during contact 
for routine auscultation, highlights an opportunity to 
apply AI-ECG for point-of-care screening. Beyond 
accuracy of the algorithm when using single-lead 
ECG alone, this approach is contingent on 
these inputs being easy to record and being consistently 
of adequate quality for attempting AI-ECG 
interpretation.

We aimed to investigate whether AI-ECG, retrained to 
use single-lead ECG as input, could interpret recordings 
from an ECG-enabled stethoscope at anatomical sites 
established within routine clinical examination, and 
whether it could detect LVEF of 40% or lower in a previously 
untested population. Our study tested a hypothesis that 
LVEF of 40% or lower could be detected at or above the 
clinically meaningful accuracy of previous 12-lead ECG 
studies (sensitivity >81% and specificity >67%),13 
demonstrating that a universal cornerstone of patient 
encounters—the stethoscope examination—could provide 
a point-of-care screening opportunity.

Research in context

Evidence before this study
Previous studies have applied deep learning methods to 
highlight the 12-lead ECG as an accurate digital biomarker for 
changes in left ventricular ejection fraction (LVEF). We searched 
the Embase and MEDLINE databases for relevant full-text 
articles written in English published between database 
inception and July 2, 2021. Our search strings included “ECG” or 
“EKG” OR “electrocardiogram”, AND “deep learning” OR “neural 
network” OR “machine learning” AND “prediction” OR 
“screening” AND “heart failure” or “systolic dysfunction” OR 
“ejection fraction.” 1284 abstracts were reviewed for suitability 
and 26 full-text articles retrieved accordingly. We identified ten 
original research studies that applied deep learning to predict 
LVEF using 12-lead ECGs as inputs. Six of these studies relate to 
the Mayo Clinic’s algorithm for detecting low LVEF from 12-lead 
ECG (known as artifical intelligence [AI]-ECG), which has been 
retrospectively externally validated among Mayo Clinic cohorts 
and in a Russian population. Most recently, AI-ECG was 
evaluated in a pragmatic randomised trial that used AI-ECG 
within Mayo Clinic primary care practices, highlighting an 
increased rate of LVEF ≤50% diagnosis in the intervention 
group. The patient profile in all these studies is at least 90% 
White. There are no studies describing the use of AI-ECG using 
single-lead ECG input alone for prediction of LVEF of 40% or 
lower, and specifically no studies using an ECG-enabled 
stethoscope to instantly derive this input for screening at the 
point of care.

Added value of this study
We have completed the first, to our knowledge, prospective, 
multicentre study of AI-ECG retrained to use single-lead ECG 
as input. Furthermore, these inputs were recorded during an 

ECG-enabled stethoscope examination at universal 
anatomical landmarks for cardiac auscultation, plus one 
handheld position. Our participants were UK National Health 
Service patients attending for transthoracic 
echocardiography, where the transthoracic echocardiogram-
derived LVEF was used as the gold-standard ground truth to 
test the performance of single-lead AI-ECG. We focused on 
detection of reduced LVEF (≤40%), given the availability of 
prognostically beneficial therapies in this group. Our study 
shows the accuracy of AI-ECG using single-lead inputs and 
that a 15 s ECG-enabled stethoscope examination can reliably 
(>93%) record adequate inputs for such analysis. We highlight 
a position over the pulmonary valve as having the highest 
area under the curve, and indicate this quality can be further 
improved by using recordings from two positions combined 
in either a simple rule-based approach or by using further 
processing AI-ECG outputs with logistic regression. 
Importantly, our population has unprecedented racial 
diversity (41% non-White).

Implications of all the available evidence
Our study suggests AI-ECG can be applied for point-of-care 
detection of reduced LVEF using single-lead ECG alone. 
Acquiring inputs from an ECG-enabled stethoscope uses a 
familiar clinical tool with universal workflow, potentially 
facilitating ease of clinical adoption. Whether the performance 
of AI-ECG holds true in an unselected screening population will 
require further prospective studies. The opportunity to screen 
for reduced LVEF in primary care settings might help to address 
the reality that reduced LVEF is predominantly diagnosed 
through hospital admission.
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Methods 
Study design and participants 
In this prospective, multicentre study, patients were 
recruited from seven NHS sites (including hospitals and 
community health centres) that perform transthoracic 
echocardiography in London, UK. Partients were 
recruited by 15 operators (six clinicians, six sonographers, 
and three senior medical students), all of whom received 
the same training. All adults (aged ≥18 years) attending 
for transthoracic echocardiogram were eligible to 
participate (inpatients and outpatients). Patients were 
attending for transthoracic echocardiogram as part of 
their routine clinical care, having been referred by 
clinicians for various standard transthoracic echocardio
gram indications, such as investigation of symptoms 
(eg, breathlessness, peripheral oedema, fatigue, and 
chest pain) and screening (eg, due to hypertension, 
arrhythmia, stroke, or suspected valve disease). Patients 
were not excluded on the basis of the reason for 
transthoracic echocardiogram referral or patient clinical 
characteristics.

Written informed consent was obtained from all 
participants before enrolment. This study was approved 
by the UK Health Research Authority (reference 
21/LO/0051). The protocol is available online.   

AI-ECG algorithm 
The model design for 12-lead AI-ECG has been previously 
described.9 Briefly, the model uses a convolutional neural 
network, trained on 35 970 independent pairings of 
12-lead ECG and echocardiograms from the proprietary 
Mayo Clinic digital data vault. We tested the Mayo Clinic’s 

single-lead version of AI-ECG, which uses similar model 
architecture retrained with each single-lead ECG 
extracted from the original 12-lead dataset.

For each single-lead ECG input, the output for the 
convolutional neural network is a continuous value 
between 0 and 1, indicating the probability of the 
condition of interest being present—ie, LVEF of the 
specified cutoff consistent with heart failure with a 
reduced ejection fraction (LVEF ≤40%, where 
prognostically beneficial therapies are available). The AI-
ECG threshold can be adjusted along this 0–1 scale 
(figure 1) according to the LVEF cutoff of interest and 
trade-off in performance (eg, sensitivity vs specificity). 
The ECG-enabled stethoscope records 15 s of single-lead 
ECG, where only the first 10 s are analysed by the AI-
ECG model. On the basis of a separate deep learning 
classifier trained on signal quality annotations, which 
was validated based on ground truth determined by a 
plurality vote of three cardiologists, ECG recordings are 
categorised as adequate or inadequate quality to attempt 
AI-ECG interpretation. AI-ECG will interpret any 
adequate quality ECG waveform and produce a 
prediction, regardless of the position or orientation from 
which the single-lead ECG is being recorded.

Procedures 
Patient recruitment started on Feb 6, 2021. All 
participants had 15 s of supine, single-lead ECG recorded 
via two electrodes on a widely available, ECG-enabled 
stethoscope (Eko DUO; Eko Health, Oakland, CA, USA). 
All recordings were done within 24 h of transthoracic 
echocardiogram; almost all were recorded during the 

Figure 1: Schematic of ECG-enabled stethoscope and AI-ECG
Illustration of anatomical positions for auscultation and position-specific angulation (vector) of ECG-enabled stethoscope; and flow diagram of raw ECG data to 
cloud-based CNN for interpretation of AI-ECG, with illustration of how raw outputs are classified according to adjustable (optimised) threshold. Anatomical images 
adapted from BioRender. AI=artificial intelligence. CNN=convolutional neural network. LVEF=left ventricular ejection fraction. 
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same clinical encounter. Members of the research team 
were unaware of participants’ LVEF at the time of 
recording and remained blinded to these results for the 
duration of the study.

The ECG-enabled stethoscope has two electrodes on 
the patient-facing side of the device. Placement on a 
patient’s chest (or handheld) creates a vector for recording 
ECGs. For simplicity and following a familiar clinical 
workflow, positions were recorded in sequence at 
standard anatomical landmarks for auscultation of the 
aortic, pulmonary, tricuspid, and mitral valves, and at 
one handheld position. The single, fixed angulation 
specified for each position was reached via clinical 
consensus of what was most intuitive and captured 
various vectors across the five positions. Aortic and 
pulmonary positions were recorded holding the device 
angled to the left, with the tricuspid position in a vertical 
and mitral position in a horizontal orientation (figure 1). 
Although precordial placement is not identical to 
electrode positioning for 12-lead ECG, the vectors 
explored were similar. For example, the pulmonary valve 
position most closely resembles lead 2 of a 12-lead ECG. 
Heart sounds (phonocardiograms) were automatically 
recorded at the same time, but did not serve as inputs for 
AI-ECG. For the handheld position, patients were asked 
to place their thumbs on the two electrodes, with the left 
thumb on the exploring electrode, such that this 
represented lead 1 of a standard 12-lead ECG.

The ECG-enabled stethoscope transmitted single-lead 
ECG recordings via Bluetooth for visualisation via an 
Android or iOS smartphone app (Eko Digital Stethoscope 
+ ECG; Eko Health). The app notified the operator when 
the ECG signal was of adequate or inadequate quality for 
attempting interpretation by the algorithm. Only 
one recording attempt was allowed for each position. The 
ECG waveform data were analysed in real time by AI-ECG 
via a cloud-based convolutional neural network, hosted by 
the device manufacturer using protocols compliant with 
the Health Insurance Portability and Accountability Act 
and General Data Protection Regulation. No information 
was stored on individual users’ smartphones. Overall, the 
full examination took approximately 2 min per patient. 
Raw AI-ECG predictions for each single-lead ECG were 
retrieved from the stethoscope manufacturer’s online 
dashboard and combined with a secure, de-identified 
database containing relevant demographic and clinical 
variables for each participant. Patients’ ethnicity was self-
reported from a list of 18 options drawn from the UK 
Office of National Statistics Census for England.15

Outcomes 
Our primary outcome was the identification of patients 
with an LVEF of 40% or lower from single-lead ECG 
recordings obtained by the ECG-enabled stethoscope. 
For diagnostic accuracy assessment, the gold standard 
was percentage LVEF as measured on a 2D transthoracic 
echocardiogram acquired by echocardiographers 

accredited by the British Society of Echocardiography.16 
LVEF was recorded in line with the same approach taken 
by the Mayo Clinic for labelling the ground-truth training 
dataset for AI-ECG. Namely, the first LVEF available from 
a standard hierarchical sequence: a biplane approach 
using the Simpson method, a 2D method, or M-mode 
and, in the absence of any of the preceding, the reported 
visually estimated LVEF. Where LVEF was reported as a 
range, the midpoint value was used. LVEF was further 
binarised according to the LVEF cutoff of interest.

Statistical analysis 
Demographical and clinical variables were summarised 
for the overall cohort using means and standard 
deviations. We compared groups stratified by LVEF 
(>40 vs ≤40%) using Student’s t tests for continuous 
variables or Pearson’s χ² test for categorical variables, as 
appropriate, with p<0·05 considered statistically 
significant. The 18 possible options for ethnicity were 
grouped into White, Black, Asian, mixed, and other.

Using outputs from the AI-ECG model in the interval 
range of 0–1, performance at classifying LVEF 
(>40% vs ≤40%) was measured for each position by calcu
lating the area under the receiver operating characteristic 
curve (AUROC), using a reference standard of transthoracic 
echocardiogram-derived percentage LVEF. We tested the 
AUROC results between the best and second best 
performing single position using the DeLong test for 
significance.17 For each position, we also report sensitivity, 
specificity, negative and positive predictive value, and 
F1 score at (1) the optimal threshold maximising the sum 
of sensitivity and specificity (ie, Youden’s index), and (2) a 
restricted threshold that would maximise the sum of 
sensitivity and specificity, with a minimum sensitivity of 
81% and (where possible) a minimum specificity of 67%. 
95% CIs are reported using the latter restriction. Using the 
single-best performing position and compared with the 
overall population, we also report diagnostic ORs stratified 
by sex for two age bands (18–69 years and ≥70 years) and by 
non-White ethnicity. Diagnostic OR is the ratio of positive 
likelihood ratio (sensitivity / [1 – specificity]) to the negative 
likelihood ratio ([1 – sensitivity] / specificity). We applied the 
Breslow-Day test for homogeneity to test for significant 
(p<0·05) variation in performance. Performance is 
reported using only ECG recordings of adequate quality to 
attempt AI-ECG analysis.

Expanding beyond the single-best position alone, 
performance is also reported when considering the best 
combination of two positions when using a rule-based 
approach, where either position predicting LVEF of 40% 
or lower was a positive test result. Using the dataset of 
0–1 values for AI-ECG model predictions from each of 
the two optimally combined positions as inputs, several 
classification models (including logistic regression) 
were tested for predicting LVEF of 40% or lower. These 
models used 60% of the dataset for training and 40% for 
testing, and consisted of equal proportions of patients 
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with each LVEF status (>40% vs ≤40%; randomly 
allocated). The best model was selected using five-fold 
cross validation.

Using predictions from the AI-ECG neural network in 
the interval range 0–1 for each single-lead ECG, receiver 
operating characteristic curves were plotted to display 
performance across a full range of thresholds. We 
generated a receiver operating characteristic curve 
summarising the single-best position, rule-based optimal 
combination of two positions, and best overall classi
fication model. Confusion matrices are presented using 
the restricted threshold.

All analyses were done in R (version 3.6.1) and Python 
(version 3.7.6). We used STARD reporting guidelines 
(checklist included in the appendix pp 6–7).  This study is 
registered with ClinicalTrials.org NCT04601415.

Role of the funding source 
The funders had no role in the study design, data 
collection, data analysis, data interpretation, or writing of 
the report.

Results 
Between Feb 6 and May 27, 2021, 1050 patients were 
recruited, of whom 105 (10%) had an LVEF of 40% or 
lower and 945 (90%) had an LVEF of at least 40% 
(figure 2). Overall, the mean age was 62 years (17·4); 
535 (51%) patients were male and 432 (41%) were non-
White. Full ethnicity breakdown is available in the 
appendix (p 2). Compared with the normal LVEF group 
(LVEF >40%), the reduced LVEF group (LVEF ≤40%) was 
older (mean age 62 years [SD 17·5] vs 67 years [15·3]) and 
had fewer female participants (36 [34%] of 105 vs 479 [51%] 
of 945; table 1). Most comorbidities were more prevalent 
among the reduced LVEF group.

Single-lead ECG recordings were attempted at all 
precordial positions in 1045 (99·5%) of 1050 participants. 
For the handheld position, this was 1006 (95·8%); 
reasons for not attempting ECG recording included 
patients being unable to hold the device (eg, due to 
previous stroke). Recording of a 15 s ECG of adequate 
signal quality for attempting AI-ECG interpretation 
varied across positions, with the aortic (846 [80·6%] 
of 1050) and pulmonary (979 [93·2%]) positions 
performing worst and best, respectively (table 2). Taking 
position 2 as an example, baseline characteristics for age 
and sex did not differ between those who did and did not 
have adequate quality recordings (p>0·05).

The performance of the AI-ECG algorithm is 
summarised in table 2. Confusion matrices are presented 
in table 3. The single-best performing position was over 
the pulmonary valve, with an AUROC of 0·85 (95% CI 
0·81–0·89), sensitivity of 84·8% (76·2–91·3), and 
specificity of 69·5% (66·4–72·6; figure 3). The 

All participants 
(n=1050)

LVEF >40 group 
(n=945)

LVEF ≤40 group 
(n=105)

p value

Age, years

18–69 636 (61%) 583 (62%) 53 (50%) 0·034

≥70 414 (39%) 362 (38%) 52 (50%) ··

Mean (SD) 62 (17·4) 62 (17·5) 67 (15·3) 0·0014

Sex

Male 535 (51%) 466 (49%) 69 (66%) 0·0015

Female ·· ·· ·· ··

Mean TTE LVEF (SD), % 54% (10·3) 57% (5·8) 30% (8·2) <0·0001

Ethnicity ·· ·· ·· 0·4

Asian 199 (19%) 176 (19%) 23 (22%) ··

Black 95 (9%) 84 (9%) 11 (10%) ··

Mixed 22 (2%) 18 (12%) <5 ··

Other 116 (11%) 102 (11%) 14 (13%) ··

White 618 (59%) 565 (60%) 53 (50%) ··

Medical history

Hypertension 395 (38%) 338 (36%) 57 (54%) <0·0001

Myocardial infarction 102 (10%) 62 (6%) 40 (38%) <0·0001

Atrial fibrillation 173 (16%) 146 (15%) 27 (26%) 0·011

Pacemaker 59 (6%) 43 (5%) 16 (15%) <0·0001

Diabetes 224 (21%) 181 (19%) 43 (41%) <0·0001

Stroke or transient 
ischaemic attack

100 (10%) 85 (9%) 15 (14%) 0·11

Chronic kidney disease 98 (9%) 74 (8%) 24 (23%) <0·001

Smoking 148 (14%) 132 (14%) 16 (15%) 0·78

Excessive alcohol intake 26 (2%) 25 (2·6%) <5 0·48

Hypercholesterolaemia 188 (18%) 159 (17%) 29 (28%) 0·0098

Pregnancy (current) 21 (2%) 21 (2%) 0 0·24

Chronic obstructive 
pulmonary disease

57 (5%) 48 (5%) 9 (89%) 0·20

Data are n (%) unless otherwise stated. Characteristics reported in fewer than five participants are shown as <5. 
p values were calculated via Student’s t test or Pearson’s χ² test. Ethnicity was self-reported from a list of 18 options 
drawn from the UK Office of National Statistics Census for England.15 Full ethnicity breakdown is available in the 
appendix (p 2). TTE LVEF=transthoracic echocardiogram-derived left ventricular ejection fraction. 

Table 1: Baseline characteristics of study participants

Figure 2: Study profile
TTE=transthoracic echocardiogram. LVEF=left ventricular ejection fraction. 
NHS=National Health Service. *Three hospitals and four community centres.

945 with LVEF >40%

Seven NHS sites* performing TTE in London

1050 enrolled

1050 completed protocol

1076 patients (aged ≥18 years) attending for TTE were 
approached to have single-lead ECGs recorded with 
ECG-enabled stethoscope at five positions

26 declined

105 with LVEF ≤40% 

See Online for appendix
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second-best position was handheld, with an AUROC 
of 0·79 (0·74–0·84; p=0·02). When considering the 
restricted threshold for recordings over the pulmonary 
valve, the number of false positive results was higher in 
the LVEF 41–50% range (47 [43%] of 109) than in those 
with a normal LVEF of 50–70% (215 [26·2%] of 820, 
p=0·01; appendix p 3). The appendix (p 4) shows 
differences in model performance among the 
three operators who recruited the most patients.

The pulmonary and handheld positions performed best 
when combined using a rule-based approach: either one or 
both predicting LVEF of 40% or lower being considered a 
positive test. For this analysis, 864 (82·3%) of 1050 patients 
had adequate quality single-lead ECG for attempted AI-
ECG prediction at both positions. The resultant AUROC 
was 0·85 (95% CI 0·81–0·89), with 82·7% (72·7–90·2) 
sensitivity and 79·9% (77·0-82·6) specificity.

The model with the best performance used weighted 
logistic regression with l2 regularisation. We used data 

from 864 patients (number of patients with adequate ECG 
recordings at both pulmonary and handheld positions): 
518 (60%) for training and 346 (40%) for testing. Using 
AI-ECG outputs from these two positions, a weighted 
logistic regression with l2 regularisation resulted in an 
AUROC of 0·91 (0·88–0·95), sensitivity of 91·9% 
(78·1–98·3), and specificity of 80·2% (75·5–84·3).

The performance of the AI-ECG algorithm stratified by 
sex and age (18–69 years vs ≥70 years), and by non-White 
ethnicity, is presented in figure 4. Compared with the 
overall diagnostic OR for the whole study population, no 
significant differences were seen.

Discussion 
This observational, prospective, multicentre study 
showed for the first time the performance of AI-ECG for 
detecting LVEF of 40% or lower using only single-lead 
ECGs recorded during an ECG-enabled stethoscope 
examination. Our study of 1050 patients undergoing 
transthoracic echocardiogram found that a single-best 
position, two best positions combined, and an exploratory 
logistic regression model attained AUROCs of 0·85, 
0·85, and 0·91, respectively. These results suggest that 
the stethoscope examination, a universal component of 
the clinician–patient interaction, can be used as a 
screening tool for LVEF of 40% or lower by combining 
ECG recording and AI at the point of care.

From a public health perspective, combining AI with 
an ECG-enabled stethoscope examination for low-cost 
screening for LVEF of 40% or lower fulfils key criteria for 
a screening programme, including the underlying 
condition being a public health priority,18 involving a 
latent or early symptomatic phase,19 and for which 
evidence-based therapies are available. Further evaluation 
of the potential cost-effectiveness and effects on patient 
outcomes will be needed, especially in conjunction with 
established screening tests for heart failure, such as 
natriuretic peptide blood tests, which could further 
improve predictive capability. Easily available clinical 
tabular variables, such as age, sex, blood pressure, or the 

Adequate ECG, n/N (%) AUC Maximising Se and Sp equally (Youden index) Maximising Se and Sp with rule Se >81, Sp >67, 
Se >81, or maximising Sp

Threshold Se Sp PPV NPV F1 score Threshold Se Sp PPV NPV F1 score

1 846/1050 (80·6%) 0·75 0·370 77·1 60·7 17·3 95·9 0·282 0·345 81·9 53·3 15·8 96·2 0·264

2 979/1050 (93·2%) 0·85 0 ·443 71·7 86·5 37·0 96·3 0·486 0·341 84·8 69·5 23·6 97·4 0·369

3 946/1050 (90·1%) 0·78 0·489 68·1 77·4 24·7 95·5 0·361 0·280 81·9 55·2 16·6 96·3 0·275

4 968/1050 (92·2%) 0·78 0·420 62·9 80·6 26·2 95·0 0·368 0·312 81·4 58·4 17·7 96·4 0·290

5 916/1050 (87·2%) 0·79 0·427 62·8 83·4 27·7 95·5 0·383 0·304 81·4 60·1 17·5 96·8 0·287

2 and 5 864/1050 (82·3%)* 0·85 0·450 82·7 79·9 29·9 87·8 0·439 0·450 82·7 79·9 29·9 87·8 0·439

2 and 5, LR 346/864 (40%)† 0·91 0·497 91·9 80·2 35·1 98·4 0·503 0·497 91·9 80·2 35·1 98·4 0·503

AUC=area under the curve. 1=aortic. 2=pulmonary. 3=tricuspid. 4=mitral. 5=handheld. AI=artificial intelligence. LR=logistic regression. Se=sensitivity. Sp=specificity. 
PPV=positive predictive value. NPV=negative predictive value. *Number of patients who had adequate recordings at both position 2 and 5, where a positive AI-ECG result as 
per threshold was considered a positive test. †Representing 40% testing dataset from the original 864 participants with both position 2 and 5 recordings.

Table 2: Performance characteristics of AI-ECG, by position

All participants LVEF ≤40% LVEF >40%

Position 2

Number 979 99 880

AI-ECG positive 352 84 268

AI-ECG negative 627 15 612

Positions 2 and 5 (rule based)

Number 864 81 783

AI-ECG positive 224 67 157

AI-ECG negative 640 14 626

Positions 2 and 5 (logistic regression)

Number 346 n=37 309

AI-ECG positive 95 34 61

AI-ECG negative 251 3 248

Confusion matrices are displayed according to the restricted threshold for 
maximising sensitivity and specificity, with rule sensitivity >81, specificity >67; or 
sensitivity >81, maximising specificity. AI=artificial intelligence. LVEF=left 
ventricular ejection fraction.  

Table 3: Confusion matrices
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presence of comorbid illness, might further improve the 
model output and aid in the identification of systolic 
dysfunction. In the clinic, pre-test probability is likely to 
be greatest among those with heart failure with reduced 
ejection fraction symptoms (eg, breathlessness, ankle 
oedema, and fatigue). However, these are non-specific 
symptoms and can result in a host of other acute or 
chronic conditions being investigated first. Here, where 
a stethoscope examination would always be indicated, 
delays to diagnosis might be avoided by flagging the 
possibility of heart failure with a reduced ejection fraction 
early. Given the substantial expense of echocardiography 
and the NHS-wide shortage of echocardiographers,20 the 
high negative predictive value (97%) could also enable 
resource prioritisation.

Successful system-wide adoption of any AI tool will 
require trust from patients and clinicians, and behavioural 

change in the latter to both adopt and follow recommen
dations from algorithms.21,22 The unknown, black box 
nature of the neural network means that the specific ECG 
features that determine individuals’ classification of LVEF 
status are not obvious, although it probably draws on 
established pathological effects of reduction in LVEF on 
the ECG.23–25 Similar to the application of neural networks 
for predicting coronary artery disease from retinal 
imaging,26 our study uses AI for the interpretation of a 
digital biomarker beyond the capacity of human skill. We 
include examples of single-lead ECGs at the pulmonary 
position classified by the optimised threshold as true 
positive, false positive, and false negative, for visual 
inspection in the appendix (p 5). Consistent features and 
weighting are not immediately obvious. Reassuringly, in 
our study population, performance of the algorithm did 
not differ by age, sex, or non-White ethnicity.

An external validation study of AI-ECG using 12-lead 
inputs reported an AUROC of 0·82,13 compared with 0·93 
for the original internal validation study.9 Our findings 
using only single-lead ECG inputs, therefore, compare 
favourably. The low positive predictive value should be 
interpreted in the context of both the selected study 
population—patients attending for ECG and, therefore, 
more likely to have abnormal ECG features that risk a 
false positive result—and that false positives occurred 
most frequently in the LVEF 41–50% range. This is 
within the diagnostic spectrum of heart failure where, 
from a clinical perspective, further investigation would 
be warranted, entailing minimal-risk natriuretic peptide 
blood testing. Therefore, a key challenge will be how to 
select and define specific thresholds and cutoff points. 
For example, more specific cutoffs could optimise against 
false positive rates, but at the expense of lower sensitivity. 
Population-specific cutoffs might be necessary to 
optimise test performance for differing demographical 
and disease profiles, including different underlying 
disease prevalence.

Defining the unit of examination (one or multiple 
positions) will also be important. We have shown that 
performance was moderately improved when applying 
AI-ECG at two positions. Considering the four universal 

Figure 3: Receiver operating characteristic curves detection of reduced LVEF
Data are shown for the single-best performing position (pulmonary), rule-based 
optimal combination of two positions (pulmonary and handheld), and exploratory 
logistic regression model with l2 regularisation using AI-enabled ECG outputs from 
optimal combination of two positions. AUROC=area under the receiver operating 
characteristic curve. LR=logistic regression. LVEF=left ventricular ejection fraction.
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Figure 4: Convolutional neural network’s sensitivity and specificity to detect LVEF ≤40% 
Data are tabulated across a range stratified into age bands by sex, and by non-White ethnicity, using results from the pulmonary position at the threshold maximising 
the sum of sensitivity and specificity. The diagnostic OR and associated 95% CI is shown for each group and for the overall study sample. For sensitivity, data presented 
in brackets represents the number of patients in each group who had a positive result, with the denominator the number of patients with LVEF ≤40%. For specificity, 
this is the number of patients with a negative result, with the denominator patients with LVEF>40%. OR=odds ratio. LVEF=left ventricular ejection fraction.
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positions for stethoscope examination (plus one 
handheld) for each patient, we obtained five raw AI-ECG 
outputs. When exploring just two of these, inputting AI-
ECG values into a logistic regression model showed 
substantial improvement in performance. Notably, such 
an approach should not compromise the tool’s ease of 
use by requiring an end user to take multiple recordings 
or manually input data into a further model, which 
should be avoidable through automation and considered 
user experience design. Displaying percentage LVEF or 
raw predictions as a continuous variable might empower 
individual clinician choice on the appropriate threshold 
for ordering further investigations on a case-by-case 
basis; however, as a decision aid for non-specialists, this 
feature might be less desirable.

The original internal validation study9 (12-lead ECG) 
identified a four-times increase of developing an LVEF of 
35% or lower in subsequent years if AI-ECG predicted an 
ejection fraction of 35% or lower, but echocardio
gram-derived LVEF was at least 35%. This finding 
highlights the possibility that ECG changes might 
predate deterioration in LVEF detectable by echocardio
graphy. Accordingly, we will perform long-term follow-up 
of clinical outcomes for false positives in our study cohort 
to investigate if AI-ECG can propose a cohort for 
surveillance.

Given substantial concerns and criticisms of validation 
studies of health-related AI tools,27–29 our study design has 
several strengths. First, data were collected prospectively 
across multiple real-world settings and by many operators. 
Second, the authors are independent of the groups who 
developed both AI-ECG and the ECG-enabled stethoscope. 
Third, our study population was unrelated to the training 
cohort, and our sample’s ethnic diversity (41% non-White) 
is unmatched by previous, retrospective external validation 
studies of AI-ECG (which were <10% non-White). Fourth, 
beyond testing the performance of AI-ECG alone, we 
evaluated a form factor and workflow for front-line clinical 
delivery that has several advantages over 12-lead ECGs. 
Namely, the recording of ECGs during auscultation over 
the single-best (pulmonary) position achieved adequate 
recordings to attempt prediction in at least 93% of patients 
(vs 87% for handheld position), taking 15 s to complete 
and requiring minimal training. Fifth, use of AI and an 
ECG-enabled stethoscope upgrades a familiar tool already 
in daily clinical use. This potentially overcomes barriers, 
such as maintained use by clinicians, previously identified 
as a challenge for other devices capable of recording 
single-lead ECGs.30 Such a tool could be particularly 
impactful in the busy primary care setting, given that, 
among the 80% of patients diagnosed with heart failure in 
hospital, 40% have had a recent primary care encounter 
with symptoms of heart failure that would have warranted 
a stethoscope examination.1 This approach would also be 
of value in low-income countries with health systems 
where access to cardiological care and imaging is scarce.21,31 
Finally, beyond the scope of this study, the dual acquisition 

of precordial ECG and phonocardiogram (heart sounds) 
highlights an opportunity to also screen for further 
priority cardiovascular diseases, such as valvular heart 
pathology, using AI-enabled phonocardiography.32 
Similarly, the 15 s single-lead ECG offers an opportunity 
for the detection of atrial fibrillation, either by visual 
inspection, or also supported by AI.33,34 Improvements in 
accuracy for predicting reduced LVEF might be achievable 
by combined AI analysis of synchronous ECG and 
phonocardiogram waveforms.

Our study has limitations. First, the patient cohort is not 
fully representative of a screening population, where lower 
prevalence of an LVEF of 40% or lower could influence 
performance characteristics, particularly positive predictive 
values. Although the disease profile of our population 
probably reflects those who would benefit most from 
screening for reduced LVEF, further studies are needed, 
particularly in primary care settings. Further investigation 
would also address the current paucity of data describing 
prevalence of asymptomatic disease. Second, without 
comprehensive access to all participants’ electronic health 
records to determine any previously normal LVEF, we are 
unable to precisely characterise how many participants 
were flagged as positive by AI-ECG as part of an index 
diagnosis of heart failure with a reduced ejection fraction. 
Third, there is established inter-operator variability in 
measurement of LVEF from echocardiography, giving rise 
to the possibility that some participants close to the LVEF 
40% borderline were misclassified. Further studies with a 
higher number of operators across the wider clinical 
workforce will be required to determine if the device is 
universally easy to use. Lastly, we have not tested for 
reproducibility. There will have been inter-operator 
variability in the precise position and angulation of the 
ECG-enabled stethoscope, although this variability reflects 
the reality of clinical practice.

In summary, our study found that AI-ECG could 
identify patients with reduced LVEF (≤40%) from single-
lead ECG inputs. Through use of an ECG-enabled 
stethoscope, we highlight an AI algorithm embedded in 
a familiar clinical tool that fits into routine and universal 
clinical workflows. Given the frequent clinical encounters 
of undiagnosed patients before index hospital admission 
for heart failure, the stethoscope examination has the 
potential to be a point-of-care screening opportunity, and 
through further AI algorithms, to become a tool for 
comprehensive detection of cardiovascular disease.
Contributors
PB, FES, DK, AF, CMP, and NSP conceptualised the study. PB, FES, 
MAK, HKS, BD, RA, PSP, IRH, AA, and MR recruited patients, 
performed the examination protocol, and recorded data. CFP led the 
logistic regression analysis and statistical analysis, with support from 
SRP and PB. PB, CFP, SRP, MAK, BD, MS-S, DBK, DK, CMP, and NSP 
interpreted the data and analyses. All authors have verified the 
underlying data, analyses, and interpretations. PB, CFP, MAK, DBK, and 
DK wrote the first draft of the manuscript, and all authors reviewed, 
contributed to, and approved the manuscript. All authors had full access 
to all the data in the study and had final responsibility for the decision to 
submit for publication.



Articles

 www.thelancet.com/digital-health   Vol 4   February 2022	 e125

For the GitHub code see https://
github.com/cpetri/Eko_study

Declaration of interests
We declare no competing interests. 

Data sharing
Data collected during our study can be made available as part of further 
research collaborations. Interested parties should contact the 
corresponding author (NSP). Any data sharing will be subject to meeting 
data protection rules and regulations of Imperial College London and 
Imperial College Healthcare NHS Trust. Code used for the analysis of 
this study is freely available on GitHub. The code that constitutes the 
AI-ECG algorithm is proprietary to the Mayo Clinic, which has licensed 
AI-ECG to Eko Health for use with the ECG-enabled stethoscopes. The 
authors of this work did not have access to the code for the AI-ECG 
model and associated Mayo Clinic data.

Acknowledgments
This study was funded by the Artificial Intelligence in Health and Care 
Award from the NHS Accelerated Access Collaborative in partnership with 
NHSX and the National Institute for Health Research, and supplemented 
by Imperial College Healthcare NHS Trust, Imperial Health Charity, 
Imperial Biomedical Research Centre of the National Institute for Health 
Research, and the British Heart Foundation. We thank the Imperial 
HOPE-HF patient participation group for their feedback on study design. 
We also thank colleagues from the cardiac investigations departments 
across Imperial College Healthcare NHS Trust, Imperial Health Charity, 
Imperial Biomedical Research Centre of the National Institute of Health 
Research, the British Heart Foundation, Pfizer Independent Grants, 
NHSX, and the Rosetrees Foundation.

References
1	 Bottle A, Kim D, Aylin P, Cowie MR, Majeed A, Hayhoe B. Routes 

to diagnosis of heart failure: observational study using linked data 
in England. Heart 2018; 104: 600–05.

2	 Heidenreich PA, Albert NM, Allen LA, et al. Forecasting the impact 
of heart failure in the United States: a policy statement from the 
American Heart Association. Circ Heart Fail 2013; 6: 606–19.

3	 Ambrosy AP, Fonarow GC, Butler J, et al. The global health and 
economic burden of hospitalizations for heart failure: lessons 
learned from hospitalized heart failure registries. J Am Coll Cardiol 
2014; 63: 1123–33.

4	 National Health Service. The NHS long term plan. Jan 7, 2019. 
https://www.longtermplan.nhs.uk/wp-content/uploads/2019/08/
nhs-long-term-plan-version-1.2.pdf (accessed Aug 10, 2021).

5	 Bozkurt B, Coats AJS, Tsutsui H, et al. Universal definition and 
classification of heart failure: a report of the Heart Failure Society 
of America, Heart Failure Association of the European Society of 
Cardiology, Japanese Heart Failure Society and Writing Committee 
of the Universal Definition. Eur J Heart Fail 2021; 23: 352–80.

6	 Solomon SD, McMurray JJV, Anand IS, et al. Angiotensin-
neprilysin inhibition in heart failure with preserved ejection 
fraction. N Engl J Med 2019; 381: 1609–20.

7	 Burnett H, Earley A, Voors AA, et al. Thirty years of evidence on the 
efficacy of drug treatments for chronic heart failure with reduced 
ejection fraction: a network meta-analysis. Circ Heart Fail 2017; 
10: e003529.

8	 Bloom MW, Greenberg B, Jaarsma T, et al. Heart failure with 
reduced ejection fraction. Nat Rev Dis Primers 2017; 3: 17058.

9	 Attia ZI, Kapa S, Lopez-Jimenez F, et al. Screening for cardiac 
contractile dysfunction using an artificial intelligence-enabled 
electrocardiogram. Nat Med 2019; 25: 70–74.

10	 Adedinsewo D, Carter RE, Attia Z, et al. Artificial intelligence-
enabled ECG algorithm to identify patients with left ventricular 
systolic dysfunction presenting to the emergency department with 
dyspnea. Circ Arrhythm Electrophysiol 2020; 13: e008437.

11	 Attia ZI, Kapa S, Noseworthy PA, Lopez-Jimenez F, Friedman PA. 
Artificial intelligence ECG to detect left ventricular dysfunction in 
COVID-19: a case series. Mayo Clin Proc 2020; 95: 2464–66.

12	 Attia ZI, Kapa S, Yao X, et al. Prospective validation of a deep 
learning electrocardiogram algorithm for the detection of left 
ventricular systolic dysfunction. J Cardiovasc Electrophysiol 2019; 
30: 668–74.

13	 Attia IZ, Tseng AS, Benavente ED, et al. External validation of a 
deep learning electrocardiogram algorithm to detect ventricular 
dysfunction. Int J Cardiol 2021; 329: 130–35.

14	 Yao X, Rushlow DR, Inselman JW, et al. Artificial intelligence-
enabled electrocardiograms for identification of patients with low 
ejection fraction: a pragmatic, randomized clinical trial. Nat Med 
2021; 27: 815–19.

15	 Office for National Statistics. Ethnic group, national identity, and 
religion. 2021. https://www.ons.gov.uk/methodology/
classificationsandstandards/measuringequality/
ethnicgroupnationalidentityandreligion (accessed May 25, 2021).

16	 British Society of Echocardiography. Protocols and guidelines. 2021. 
https://www.bsecho.org/Public/Education/Protocols-and-
guidelines/Public/Education/Protocols-and-guidelines.aspx 
(accessed Jan 20, 2021).

17	 DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas 
under two or more correlated receiver operating characteristic 
curves: a nonparametric approach. Biometrics 1988; 44: 837–45.

18	 Savarese G, Lund LH. Global public health burden of heart failure. 
Card Fail Rev 2017; 3: 7–11.

19	 de Couto G, Ouzounian M, Liu PP. Early detection of myocardial 
dysfunction and heart failure. Nat Rev Cardiol 2010; 7: 334–44.

20	 Cowie MR. The heart failure epidemic: a UK perspective. 
Echo Res Pract 2017; 4: R15–20.

21	 Schwalbe N, Wahl B. Artificial intelligence and the future of global 
health. Lancet 2020; 395: 1579–86.

22	 Celi LA, Fine B, Stone DJ. An awakening in medicine: the 
partnership of humanity and intelligent machines. 
Lancet Digit Health 2019; 1: e255–57.

23	 O’Neal WT, Mazur M, Bertoni AG, et al. Electrocardiographic 
predictors of heart failure with reduced versus preserved ejection 
fraction: the multi-ethnic study of atherosclerosis. J Am Heart Assoc 
2017; 6: e006023.

24	 Hendry PB, Krisdinarti L, Erika M. Scoring system based on 
electrocardiogram features to predict the type of heart failure in 
patients with chronic heart failure. Cardiol Res 2016; 7: 110–16.

25	 Alhamaydeh M, Gregg R, Ahmad A, Faramand Z, Saba S, 
Al-Zaiti S. Identifying the most important ECG predictors of 
reduced ejection fraction in patients with suspected acute coronary 
syndrome. J Electrocardiol 2020; 61: 81–85.

26	 Rim TH, Lee CJ, Tham Y-C, et al. Deep-learning-based 
cardiovascular risk stratification using coronary artery calcium 
scores predicted from retinal photographs. Lancet Digit Health 2021; 
3: e306–16.

27	 Topol EJ. High-performance medicine: the convergence of human 
and artificial intelligence. Nat Med 2019; 25: 44–56.

28	 Parikh RB, Obermeyer Z, Navathe AS. Regulation of predictive 
analytics in medicine. Science 2019; 363: 810–12.

29	 Nagendran M, Chen Y, Lovejoy CA, et al. Artificial intelligence 
versus clinicians: systematic review of design, reporting standards, 
and claims of deep learning studies. BMJ 2020; 368: m689.

30	 Orchard J, Li J, Gallagher R, Freedman B, Lowres N, Neubeck L. 
Uptake of a primary care atrial fibrillation screening program 
(AF-SMART): a realist evaluation of implementation in 
metropolitan and rural general practice. BMC Fam Pract 2019; 
20: 170.

31	 Wahl B, Cossy-Gantner A, Germann S, Schwalbe NR. Artificial 
intelligence (AI) and global health: how can AI contribute to health 
in resource-poor settings? BMJ Glob Health 2018; 3: e000798.

32	 Chorba JS, Shapiro AM, Le L, et al. Deep learning algorithm for 
automated cardiac murmur detection via a digital stethoscope 
platform. J Am Heart Assoc 2021; 10: e019905.

33	 Attia ZI, Noseworthy PA, Lopez-Jimenez F, et al. An artificial 
intelligence-enabled ECG algorithm for the identification of 
patients with atrial fibrillation during sinus rhythm: a retrospective 
analysis of outcome prediction. Lancet 2019; 394: 861–67.

34	 Hagiwara Y, Fujita H, Oh SL, et al. Computer-aided diagnosis of 
atrial fibrillation based on ECG signals: a review. Inf Sci 2018; 
467: 99–114.

https://github.com/cpetri/Eko_study
https://github.com/cpetri/Eko_study
https://github.com/cpetri/Eko_study

	Point-of-care screening for heart failure with reduced ejection fraction using artificial intelligence during ECG-enabled stethoscope examination in London, UK: a prospective, observational, multicentre study
	Introduction
	Methods
	Study design and participants
	AI-ECG algorithm
	Procedures
	Outcomes
	Statistical analysis
	Role of the funding source

	Results
	Discussion
	Acknowledgments
	References


