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Graphical Abstract Mechanisms involved in the heart–brain crosstalk. Simplified representation of sex differences seen in the main me-
chanisms and neurohumoral circuits involved in heart–brain interactions. The intensity of activation is represented by a colour code scale,
with red indicating themaximal activation. In brief, specific triggers (e.g. stress, acutemyocardial infarction) induce the activation of the amygdala
via the central autonomic system. Efferent projections increase the activation of the sympathetic nervous system and initiate neurohormonal
output through the hypothalamic–pituitary–adrenal axis leading to catecholamine release, myelopoiesis activation, and release of pro-inflam-
matory cytokines with deleterious effect on the heart. This pro-inflammatory state initiates and promotes atherosclerosis. Current evidence on
the pathophysiology of the specific heart and brain disease discussed in this review has shown that the activation of all these mechanisms ismore
pronounced in women as compared with men. The bidirectionality of heart–brain interactions is still under investigation.
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Cardiovascular disease and brain disorders, such as depression and cognitive dysfunction, are highly prevalent conditions and are among the
leading causes limiting patient’s quality of life. A growing body of evidence has shown an intimate crosstalk between the heart and the brain,
resulting from a complex network of several physiological and neurohumoral circuits. From a pathophysiological perspective, both organs share
common risk factors, such as hypertension, diabetes, smoking or dyslipidaemia, and are similarly affected by systemic inflammation, atheroscler-
osis, and dysfunction of the neuroendocrine system. In addition, there is an increasing awareness that physiological interactions between the two
organs play important roles in potentiating disease and that sex- and gender-related differencesmodify those interactions between the heart and
the brain over the entire lifespan. The present review summarizes contemporary evidence of the effect of sex on heart–brain interactions and
how these influence pathogenesis, clinical manifestation, and treatment responses of specific heart and brain diseases.

Keywords Heart • Brain • Sex • Gender • Ischaemic heart disease • Heart failure • Takotsubo syndrome • Stroke •
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Abbreviations

AMI acute myocardial infarction
BP blood pressure
CAD coronary artery disease
CRP C-reactive protein
11C-mHED 11C-meta-hydroxyephedrine
CONFIRM Coronary CT Angiography Evaluation for

Clinical Outcomes: An International
Multicenter Registry

CT computed tomography
18F-DOPA 18F-dihydroxyphenylalanine
18F-FDG 18F-fluorodeoxyglucose
fMRI functional magnetic resonance imaging
FOXO forkhead box O
GABAA gamma-aminobutyric acid
HF heart failure
HFpEF heart failure with preserved ejection fraction
HFrEF heart failure with reduced ejection fraction
HPA axis hypothalamic–pituitary–adrenal axis
HRV hear rate variability
123I-mIBG 123I-metaiodobenzylguanidine
IHD ischaemic heart disease
IL interleukin
LV left ventricular
LVEF left ventricular ejection fraction
MACE major adverse cardiovascular events
MR magnetic resonance
PET positron emission tomography
PNS parasympathetic nervous system
RAAS renin–angiotensin–aldosterone system
SNA stress-associated neural activity
SNS sympathetic nervous system
SPECT single-photonemission computed tomography
STEMI ST-elevation myocardial infarction
99Tc-MIBI 99Technetium-methoxyisobutyl isonitrile
TSPO 18kD translocator protein
TTS Takotsubo syndrome.

Every affection of the mind that is attended with either
pain or pleasure, hope or fear, is the cause of an agitation
whose influence extends to the heart.

William Harvey

Introduction
A growing body of evidence demonstrates an intimate and bidirec-
tional crosstalk between heart and brain, resulting from a complex
network of several physiological and neurohumoral circuits.1

From a pathophysiological perspective, both organs share com-
mon risk factors, such as hypertension, diabetes, smoking, and dys-
lipidaemia, and are similarly affected by systemic inflammation,
ischaemia due to atherosclerosis, and dysfunction of the neuroen-
docrine system. Moreover, an increasing number of reports shows
that physiologic interactions between the two organs can drive the
development of cardiovascular as well as cardiometabolic condi-
tions.2–6

Sex-related differences develop and modify the heart–brain axis
during the entire lifespan.7,8 Therefore, a deeper understanding of
how sex affects heart–brain crosstalk is of paramount importance
for patient-tailored prevention and treatment of multiorgan dys-
functions resulting from either cardiac or brain damage. In this con-
text, our review article summarizes the state-of-the-art knowledge
of the effect of sex on the heart–brain interactions involved in the
development and co-occurrence of specific cardiac and brain con-
ditions with a particular focus on ischaemic heart disease (IHD),
heart failure (HF), Takotsubo syndrome (TTS), stroke, depression,
and dementia (Table 1).

(Patho)physiological systems regulating
heart–brain interactions
In this section, the (patho)physiological systems and pathways in-
volved in heart–brain crosstalk and the related sex differences
are described. In addition, a general overview of the main imaging
modalities currently available for the evaluation of the heart–brain
axis is provided (Figure 1). Indeed, new generation multisystem
scanners, such as whole-body positron emission tomography
(PET)/computed tomography (CT) and PET/magnetic resonance
(MR), offer the unique opportunity to combine molecular with
functional and anatomical imaging information, thus allowing a bet-
ter understanding of the interlinked pathways involved in these
complex multisystem interactions.

Vascular system
The vascular system is an obvious connector between heart and
brain since atherosclerosis is the systemic process identified as
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the culprit for causing both acute myocardial infarction (AMI)
and stroke. Atherosclerosis is an inflammatory disease initiated
and promoted by endothelial activation and dysfunction, leading
to an increased vascular permeability for plasma proteins, upre-
gulation of adhesion molecules, and release of pro-inflammatory
cytokines and chemokines.9,10 The involvement of these local
and systemic cascades triggers innate and adaptive immunity10,11

and induces a state of hypercoagulability,12 thus increasing
the risk of cardiovascular events13,14 and long-term cognitive
impairment.15

Thanks to recent technological advances in cardiovascular
imaging, it is possible to non-invasively assess atherosclerotic
plaques in the coronary arteries, carotids, and aorta16 as well
as their effect on myocardial and brain perfusion. While single
and dual-energy coronary CT angiography and MR imaging pro-
vide mainly anatomical information on plaque morphology and
composition,17–19 PET radiotracers such as 18F-sodium fluoride,
68Ga-DOTATATE, 18F-fluorodeoxyglucose (18F-FDG) offer add-
itional details on plaque biology and activity,20,21 thereby allowing
a better discrimination between stable and unstable plaques. The
current evidence supports a female-specific profile of less ob-
structive coronary artery disease (CAD) and lower plaque burden,
yet with worse clinical outcome.22

Regarding the haemodynamic impact of atherosclerosis, single-
photon emission computed tomography (SPECT) imaging is the
most commonly used non-invasive modality for the evaluation of
myocardial perfusion,23 with a large body of evidence supporting
its prognostic role in patients with IHD.24 Nevertheless, radiation
dose associated with SPECT remains an issue,25 and its performance
in perfusion quantification is limited and not standardized.26

Therefore, PET is considered the reference standard for quantitative
measurement of myocardial blood flow by using different radiotra-
cers such as 82Rubidium, 13N-ammonia, 18F-flurpiridaz, or
15O-water.26 Alternative modalities such as stress echocardiog-
raphy, MR imaging, and CT are currently available for the evaluation
of myocardial perfusion.27 In the brain, the main techniques current-
ly dedicated to the evaluation of brain haemodynamics are dynamic
CT, PET, SPECT, as well as diffusion and perfusion MR.28,29 Healthy
women have been reported to have significantly higher global and
regional blood flow than men in both heart and brain.30–34

Neurohumoral system
The autonomic nervous system, the limbic network, and the
renin–angiotensin–aldosterone system (RAAS) are all important
variables affecting the heart–brain axis, hence representing new im-
portant therapeutic targets in cardiovascular and neurological
diseases.

Through the sympathetic nervous system (SNS) and parasympa-
thetic nervous system (PNS), the central autonomic network reg-
ulates cardiac contraction, heart rate, and blood flow during basal
conditions, as well as in response to different triggers, such as acute
and chronic stress.35 In particular, sympathetic activation has been
detected within the prefrontal cortex, anterior cingulate, left amyg-
dala, as well as the right anterior and left posterior insular corti-
ces.36,37 As such, studies using functional MR imaging (fMRI)
techniques to assess connectivity in the brain have demonstrated
pathways of heart–brain interactions by identifying the cerebral
areas which modulate sympathetic and parasympathetic activity
in several conditions, including TSS and hypertension.38–42 While
imaging of adrenergic and cholinergic neurotransmission in the
brain is not usually performed, the peripheral autonomic system
of the human heart can be interrogated by different approaches.43

First, heart rate variability (HRV) and heart rate responses to exercise
or pharmacological stress are widely used surrogate parameters of
the autonomic activity of the heart (Table 2). In addition, radiolabelled
catecholamine analog-based myocardial imaging by SPECT and PET
can provide information regarding the integrity of the cardiac SNS
by informing on the status of the pre- and post-synaptic nerve
function.44 At present, 123I-metaiodobenzylguanidine-(123I-mIBG)-
SPECT with planar acquisition is considered the reference standard
for the evaluation of cardiac sympathetic dysfunction in several
cardiac diseases, such as cardiac arrhythmia, IHD, and HF.45,46 A
more sophisticated PET radiotracer is 11C-meta-hydroxyephedrine
(11C-mHED), which is characterized by a higher sensitivity and spatial
resolution than 123I-mIBG, allowing for the absolute quantification of
the regional distribution of cardiac sympathetic neurons.45,47 Besides
123I-mIBG-SPECT and 11C-mHED-PET, 18F-dihydroxyphenylalanine-
(18F-DOPA)-PET, originally used to evaluate the striatal dopaminergic
dysfunction in degenerative diseases, has been associated with in-
creased sympathetic activity at cardiac level.48,49 Sex differences

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Sex-specific differences identified in the main pathways transmitting along the heart–brain axis for specific
cardiac and brain disorders

IHD HF TTS Stroke Depression Dementia

Atherosclerosis +++++ +++++ +++++
SNS +++++ +++++ +++++ +++++ +++++
Hyperactivation of amygdala and limbic system +++++ +++++
HPA axis +++++ +++++
Inflammation +++++ +++++ +++++
RAAS +++++
Impaired cerebral blood flow +++++ +++++

HF: heart failure; HPA: hypothalamic–pituitary–adrenal; IHD: ischaemic heart disease; RAAS: renin–angiotensin–aldosterone system; SNS: sympathetic nervous system; TTS:
Takotsubo syndrome.
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have been detected at several levels of the autonomic nervous sys-
tem. In fact, animal and human studies have consistently highlighted
that, under physiological conditions, men have a higher baseline sym-
pathetic activity, whereas women display a more pronounced para-
sympathetic tone while maintaining sympatho-vagal balance.35

Interestingly, this difference attenuates with increasing age,48,50

possibly resulting from changes in sex hormone concentrations which
affect the autonomic system at central and peripheral levels.51 These
findings have been corroborated by using resting-state fMRI which
showed that premenopausal women have a stronger negative resting-
state functional connectivity with the default mode network (i.e. area
responsible for the suppression of the sympathetic outflow in the

Figure 1 Imaging modalities used to investigate the mechanisms involved in the heart–brain crosstalk. (A) Functional MR illustrates activated re-
gions of the brain (A1). 123I-mIBG-SPECT shows a perfusion defect involving the infero-lateral wall of the left ventricle (A2). 11C-mHED-PET de-
monstrates reduced tracer uptake in the lateral wall of the left ventricle (A3). The findings shown inA2 andA3 are indicative of cardiac sympathetic
denervation and, indirectly, of increased sympathetic tone. The uptake scales used for image visualization are reported on the right. (B)
18F-FDG-PET images show an increased 18F-FDG uptake at the level of the right amygdala (B1 –white arrow), myocardium (B2), and bonemarrow
of the spine (B3). The SUV scale used for image visualization is reported on the right. (C) Straight multiple curve reconstructions fromCCTA show
a mixed plaque with positive remodelling of mid RCA (C1), calcified plaque of mid LAD (C2), and spotty calcification of the mid LCx (C3). A
cross-section at the level of the corresponding plaque is also shown for each vessel (red box). (D) SPECT images acquired during stress (D1)
show a reversible myocardial perfusion defect of the left ventricular inferior wall which is not present at rest (D2). Hypoperfusion is detected
as a relative decrease of the uptake of the inferior wall (50–62%) as compared to the myocardial territory with the highest tracer uptake. PET
images acquired during stress indicate a low MBF (mL/g/min) in the myocardial territory supplied by the LAD (D3). In the LAD territory MBF
did not increase during stress (D3) as compared to rest (D4). The uptake and MBF scales used for image visualization and MBF quantification
are reported on the right. CCTA: coronary computed tomography angiography; 11C-mHED: 11C-meta-hydroxyephedrine; 18F-FDG:
18F-fluorodeoxyglucose; fMRI: functional magnetic resonance imaging; 123I-mIBG: 123I-metaiodobenzylguanidine; LAD: left anterior descending
coronary artery; LCx: left circumflex coronary artery; MBF: myocardial blood flow; MR: magnetic resonance; 13N-NH3: 13N-ammonia; PET: posi-
tron emission tomography; RCA: right coronary artery; SPECT: single-positron emission computed tomography; SUV: standard uptake value; 99Tc-
MIBI: 99Technetium-methoxyisobutyl isonitrile.123I-mIBG-SPECT image was provided through the courtesy of Dr Renata Chequer and Prof.
François Rouzet from the Nuclear Medicine department of the Bichat Hospital—Assistance Publique Hôpitaux de Paris.
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central autonomic network) in comparison to age-matched men.52

The sex-dimorphism related to sympatho-vagal balance disappears
aftermenopause confirming that postmenopausal women haveweak-
er parasympathetic activity and increased sympathetic outflow as
compared to younger age.52 Of note, the distinct balance of auto-
nomic function between women and men translates clinically into
sex-divergent effects of beta-blockers.53,54 Indeed, recent data sug-
gest that women need lower dose of beta-blockers compared to
men to reach maximal therapeutic efficacy in HF with reduced ejec-
tion fraction (HFrEF).55 Sex hormones also play an important role
in modulating sex differences of the sympatho-vagal balance.35

Experimental data have shown that receptors for gonadal hormones
are present in areas of the central nervous system involved in the
regulation of the autonomic nervous system.35 Accordingly, intra-
venous or central administration of oestrogens resulted in an en-
hanced parasympathetic response35,51,56 whereas testosterone
triggered the production and reduced the clearance of noradren-
aline.35 Therefore, menopause represents an important milestone
in female health since it indicates a change in cardiac physiology, as
well as an increased risk for cardiovascular diseases.57 Although a
disproportionally high sympathetic activity has been associated
with unfavourable outcomes in both male and female cardiovascu-
lar patients,58 women seem to be more vulnerable to the detri-
mental effects of sympathetic hyperactivity.59 As such,
myocardial 18F-DOPA uptake was shown to be higher in elderly
women as compared to men, especially at the level of the left ven-
tricular (LV) apex. This distribution pattern of myocardial
18F-DOPA aligns with the area of LV dysfunction involving the car-
diac apex in TTS.48

The limbic system comprises different cortical areas and subcor-
tical nuclei of the brain, including the amygdala,60 and mediates
most of the vegetative and endocrine functions of the body such
as emotions, behaviours, and memory.60 During stress conditions,
the amygdala stimulates the hypothalamus via efferent neurons to
increase SNS activity and initiate neurohormonal output through
release of adrenocorticotropic hormone by the hypothalamic–pi-
tuitary–adrenal (HPA) axis.61 In this context, the SNS plays a key
role in driving systemic inflammation62 and immune modulation63

through sympathetic nerve fibres terminating in the bone marrow
and stimulating turnover and release of myeloid cells.6,64 This effect
is further mediated by the HPA axis through catecholamine re-
lease, myelopoiesis activation, and a further increase in interleukin
(IL)-6 and C-reactive protein (CRP) levels.65,66 The established
pro-inflammatory state favours the development of atheroscler-
osis, thus highlighting the close interdependence between neuroin-
flammatory circuits and the vascular system.67–69 By administering
the glucose analog 18F-FDG, PET imaging enables the evaluation of
regional metabolism of heart and brain.6 Notably, 18F-FDG-PET
demonstrated higher stress-associated neural activity (SNA) in wo-
men during physiological aging, which manifests as an increased
resting 18F-FDG uptake at the level of the amygdala.70 This finding
may be explained by the greater and prolonged mental stress per-
ceived by women during lifespan compared with men as a reaction
to negative emotional episodes.71 Indeed, while both women and
men demonstrated resting-state functional connectivity to sensory
and emotion-related regions of the brain on resting-state fMRI,
men showed higher connectivity to areas involved in the control
of emotions.72

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Heart rate variability and heart rate response: definitions, physiological interpretation, and clinical value

Definition Physiological interpretation Clinical value

HRV Variations in the beat-to-beat heart
intervals evaluated on
electrocardiogram198

• It reflects the combined activity of
sympathetic and parasympathetic tone
on cardiac function198

• Reduced HRV expresses
sympatho-vagal imbalance (i.e.
increased sympathetic or reduced vagal
activity)198

• At a younger age (,30 years), during
resting conditions, men have
significantly higher basal sympathetic
activity (higher HRV), whereas women
have more pronounced
parasympathetic tone (lower HRV)50

• Aging is associated with a greater
increase in sympathetic tone in women
than in men50

• Depressed HRV has been associated
with an increased risk of future
cardiovascular events in populations
without known cardiovascular
disease199

• Depressed HRV has been associated
with cardiovascular risk factors such
as physical inactivity, hypertension,
and diabetes200–202

• Depressed HRV has been correlated
with HF, myocardial ischaemia, and
AMI203–205

HRR to exercise or
pharmacological
stress

Maximum percentage change after
exercise or pharmacological stress
from baseline HR59: [(HRmaximum –

HRbaseline)]/HRbaseline * 100

• It reflects the baseline symphatetic
activity59

• HRR to adenosine is influenced by age
and sex206

• A blunted HRR to stress has been
associated with worse outcome in
both sex aggregated
populations207,208 and in women59

AMI: acute myocardial infarction; HF: heart failure; HR: heart rate; HRR: heart rate response; HRV: heart rate variability.
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Finally, the RAAS is well-represented in both heart and brain,
where it regulates blood pressure (BP) and tissue blood flow, as
well as immune responses and tissue homeostasis in response to
ischaemic injury and SNS activation.73

Immune system and inflammation
Owing to its ability to alter tissue perfusion and neurohumoral
activation, inflammation represents the link between heart and
brain in different pathological conditions such as stroke and myo-
cardial infarction.74 As inflammatory cells are characterized by
elevated glucose metabolism, 18F-FDG-PET can be used to quan-
tify spleen75 and bone marrow activity6 (i.e. indicative of activa-
tion of the haematopoietic system), as well as inflammatory
responses within the arterial wall.6,43 Nevertheless, due to
the low specificity of 18F-FDG in inflammation detection,
new targets involved in the regulation of the immune system
are currently being investigated.43 Among these, the 18 kD
translocator protein (TSPO), expressed on the outer mitochon-
drial membrane, has shown promising results given that TSPO
expression increases in response to immune activation in both
microglia and systemic immune system.76 Preliminary data indi-
cate that TSPO-target imaging in patients with myocardial infarc-
tion identifies early post-infarct myocardial inflammation as well
as the presence of neuroinflammation.77 Clinical data point to
significant sex differences in inflammatory and innate immune re-
sponses, with women showing higher baseline levels of circulating
inflammatory markers78 and more pronounced production of
pro-inflammatory cytokines in response to different injuries.79–82

As such, a significant increase in 18F-FDG bone marrow uptake
has been reported in women with impaired myocardial perfusion,
but not in men.80

The scheme of theGraphical abstract integrates the main sys-
tems involved in the heart–brain crosstalk, highlighting the sex dif-
ferences which affect them.

Exploratory concepts for the assessment
of heart–brain interaction
Beyond metabolic and perfusion imaging, several brain receptor
systems are promising imaging targets to elucidate mechanisms
driving heart–brain interactions. Notably, while an enhanced amyg-
dalar metabolic activity was associated with emotional processing,
anxiety, and fear, these processes can be attenuated by targeted in-
terventions at the neurotransmitter level, thus suggesting that neu-
roreceptors are crucial components of the anxiety circuitry.83,84

Among these neuroreceptors, there is a solid body of evidence im-
plicating fast inhibitory ionotropic gamma-aminobutyric acid
(GABAA) receptors in fear and mental stress development.85–89

As such, the availability of clinically validated GABAA receptor
probes, such as 18F-flumazenil, harbours potential to facilitate
heart–brain research and shed light on sex differences in emotional
stress processing.90,91 In addition to GABAA receptors, serotoner-
gic, adrenergic, and glutamatergic signalling have been linked to crit-
ical neurotransmission in anxiety, mental stress, and stress-induced
cardiomyopathy.84,92–94 Notably, advances in translational molecu-
lar imaging have channelled the development of suitable radiotra-
cers for the non-invasive assessment of these receptors.95–97

Heart diseases

Ischaemic heart disease
Although tremendous improvements in therapeutic strategies have
led to a decline in the overall mortality rate for IHD by�30% during
the past decade, this occurred far less in women as compared to
men.98 Furthermore, mortality rates in women presenting with
ST-elevation myocardial infarction (STEMI) are higher than in age-
matched men99,100 despite women having less plaque burden and
a lower rate of obstructive CAD.22,101 Therefore, the previous as-
sumption that the pathophysiology of IHD is the same for women
andmen, but with a later onset in females, is an erroneous and over-
simplified concept. Since differences in traditional cardiovascular risk
factors cannot totally explain the observed sex disparities, sex-
specific genetic risk profiles and non-traditional risk conditions
have been proposed as complementary mechanisms.

To begin with, genome-wide association studies have recently
identifiedmore than 100 genetic loci across the genome correlated
with the development of IHD.102,103 In this context, sex-specific
variants in several genes have been detected by using polygenic
risk scores, demonstrating that the genetic effect of IHD is modi-
fied by sex.104 The involvement of the SNS and HPA axis in trigger-
ing sex differences in clinical outcomes has also been considered.
Clinical results from the large CONFIRM (Coronary CT
Angiography Evaluation for Clinical Outcomes: An International
Multicenter Registry) registry showed that LV ejection fraction
(LVEF) is significantly higher in women as compared with men.105

A strong association between LVEF .65% and increased 6-year
mortality risk has been documented in women but not in men after
adjusting for age, cardiovascular risk factors, and severity of
CAD.106 Interestingly, the prevalence of abnormally low end-
systolic volumes was twice as high in older women as compared
with younger women or men.106 These findings support the hy-
pothesis that postmenopausal women live under constant sympa-
thetic hyperactivity to compensate for the disadvantage of small
left ventricles, hence predisposing them to cardiac vulnerability in
high-stress situations. As such, in women presenting with an acute
coronary syndrome, sympathetic activity persisted for approxi-
mately nine months after the index event and was associated
with an unfavourable prognosis.107 Accordingly, chronic psycho-
logical stress has recently been listed as a risk factor for incident
IHD.108 The Perceived Stress Scale is a validated clinical question-
naire currently used to evaluate individual stress perception.109

Nevertheless, a more reliable and reproducible stress level assess-
ment can be obtained by measuring SNA by 18F-FDG-PET.110

Increased metabolic activity of the amygdala (when referenced to
counter-regulatory activity from the medial prefrontal cortex or
temporal lobe) has been reported as an independent predictor
of futuremajor adverse cardiovascular events (MACE) in a population
of patients without known IHD or active cancer.6 Notably, several
studies suggested that SNA may represent a key element driving
sex differences in IHD pathophysiology through downstream effects
on autonomic, immune, and vascular physiology.111 In fact, endothelial
dysfunction in response to cumulative mental stress has previously
been described in women but less so in men.112 In addition,
Vaccarino et al. documented that perceived stress after AMI differs
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between women andmen. In their study, while mental stress-induced
myocardial ischaemia was more common in young women with pre-
vious myocardial infarction as compared with men, no sex differences
were observed after exercise stress testing.113 Second, our group re-
ported a strong association between increased SNA, myocardial dys-
function, and subclinical inflammation in women, but not in men.2,81

Similarly, stress-induced IL-6 and monocyte chemoattractant
protein-1 have been identified as predictors of future cardiovascular
events in women with existing cardiovascular disease, while this asso-
ciation was not observed in men.114

Heart failure
Women with HF are usually older than men115 and have a better
prognosis and reduced mortality after treatment.116 In addition,
women are more commonly affected by HF with preserved ejec-
tion fraction (HFpEF), which is often associated with diabetes
and hypertension. In contrast, HFrEF is more prevalent in men
and frequently has an ischaemic aetiology. Overall, the predomin-
ance of female sex in HFpEF can be explained by the difference in
adaptive ventricular remodelling between women and men in re-
sponse to increased afterload and aging. As such, postmenopausal
womenwith HFpEF developmore frequently a hypertrophied, stiff,
and non-dilated left ventricle as compared to men117 accounting
for the higher prevalence of diastolic dysfunction in this demo-
graphic group.118

Sex hormones and neurohumoral systems drive the develop-
ment of HF and related sex differences. Testosterone stimulates
RAAS activity and triggers vasoconstriction and cardiac hyper-
trophy whereas oestrogens attenuate RAAS activity, stimulate
vasodilatation, and are associated with a more benign phenotype
of cardiac remodelling.119 The hyperactivation of the SNS has
also been recognized as a critical mechanism in the development
of HF as it correlates with disease progression and poor progno-
sis.120 Indeed, in the acute phase of HF, the activity of the SNS is
enhanced to compensate for the reduced myocardial contractility.
However, in the long-term, the persistent and excessive stimula-
tion of the SNS promotes maladaptive cardiac hypertrophy and
cell death. Of note, SNS hyperactivation is strongly associated
with arterial hypertension, obesity, and diabetes, which are the
main determinants of HFpEF in women.121 Enhanced sympathetic
outflow as reflected by increased cardiac norepinephrine turnover
and pre-synaptic norepinephrine deficits44 can be detected by
123I-mIBG scintigraphy. A pooled analysis of several multicentre
cohort studies demonstrated the independent, long-term prognos-
tic value of 123I-mIBG uptake in patients with HF after adjusting for
New York Heart Association functional class, LVEF, and natriuretic
peptide values.122,123 Similarly, cardiac sympathetic denervation
evaluated by 11C-mHED-PET imaging has been associated with
the severity of diastolic abnormality, contractile dysfunction, and fi-
brotic burden in patients with HFpEF.124,125

Finally, both the heart and the brain have an intrinsic RAAS that
is activated in HF, also contributing to sympathetic hyperactivity.126

In this context, preliminary data from a rat model of ischaemic car-
diomyopathy revealed significant sex differences in the central and
peripheral manifestations of ischaemia-induced HF, thereby
providing a potential explanation for better outcomes seen in
women with HF as compared with men.119 In particular, in the

hypothalamic paraventricular nucleus, a key area contributing to
neurohumoral excitation in HF, mRNA levels for pro-inflammatory
markers, such as tumor necrosis factor-α and IL-1β, increased less
in female as compared with male rats. Conversely, plasma norepin-
ephrine levels were lower for female rats suggesting a weaker ac-
tivation of the SNS.119 Sex specificity in the involvement of the
RAAS and sympathetic hyperactivity has also been observed in pa-
tients with both HFpEF127,128 and HFrEF.55 In fact, in the
PARAGON-HF (Prospective Comparison of Angiotensin
Receptor–Neprilysin Inhibitor with Angiotensin Receptor
Blockers Global Outcomes in HF with Preserved Ejection
Fraction) trial,128,129 among 4796 patients with HFpEF, sex ap-
peared to modify the effect of sacubitril-valsartan versus valsartan,
reducing the number of HF hospitalization in women only.128

Takotsubo syndrome
Although contemporary evidence strongly suggests an involve-
ment of the limbic system in the pathophysiology of TTS,40 the ex-
act mechanisms by which a stressful life event translates into the
onset of TTS are not fully understood. Notably, recent milestone
discoveries have directly linked the amygdala to TSS pathophysi-
ology. As such, enhanced SNA was associated with an increased
risk for TTS in a recent study by Radfar and co-workers.5

Further, among individuals who developed TTS, a heightened
SNA was present years before disease onset, indicating that SNA
precedes the cardiac manifestation of TTS and may represent a
promising prevention target.5,130 In a cross-sectional study encom-
passing 20 female TTS patients and 39 age- and sex-matched
healthy controls, a reduced thickness of the insular cortex, as
well as a reduced amygdalar gray matter volume were observed
in TTS patients but not in controls.38 These anatomical differences
were further substantiated by a follow-up study, in which reduced
functional connectivity of central brain regions associated with
regulation of the limbic system were detected in patients with
TTS.40,131–133 Given these findings, it is tempting to hypothesize
that sex differences in emotional stress perception and processing
via heart–brain interactions may contribute to the higher preva-
lence of TTS in women.48,107,134,135 Although it should be noted
that the relatively low prevalence of male TTS patients constitutes
a major challenge for the design of appropriate prospective and
sex-specific TTS studies, several recent reports concluded that
the link between amygdalar metabolic activity and abnormal car-
diac function was particularly accentuated in women.2,81,136,137

Similarly, sympathetic hyperactivity and microvascular dysfunction,
both implicated in TSS pathophysiology,138,139 were found to pre-
dict MACE in women but not in men.59,140 In concert with the high
prevalence of TTS in postmenopausal women, oestrogens were
found to attenuate sympathetic responses to mental stress in peri-
menopausal women.141 Furthermore, through a variety of mechan-
isms, oestrogens represent a key regulator of endothelial function
and vasomotor tone. These mechanisms include, but are not lim-
ited to, the attenuation of catecholamine-mediated vasoconstric-
tion142 and the upregulation of endothelial nitric oxide synthase
activity143. Consequently, the combination of enhanced baseline
sympathetic tone and impaired vasomotor function may render
postmenopausal women susceptible to TTS during periods of acute
mental or physical stress.135
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Brain diseases

Stroke
Although the association between genetic risk score and incident
stroke has been demonstrated in both women andmen, the absolute
risk of incident stroke is lower in women.144 Sex differences in stroke
epidemiology have been reported with a specific trend over the life-
span. During youth and early adulthood, stroke incidence is lower
in women than men. In the middle-aged, stroke rates start to in-
crease in women145,146 and progressively grow with aging. The in-
creasing risk of stroke in women above 65 years compared with
younger women is partially explained by the loss of neuroprotec-
tive effect of sex hormones in the postmenopause period, owing
to their ability tomaintain vascular endothelial function and attenuate
inflammatory responses.147,148 Similarly, low levels of testosterone in
men have been associated with increased systemic inflammation and
endothelial dysfunction, thus promoting the development of athero-
sclerosis as well as increasing the risk for stroke.149

Current evidence supports a deep connection between the
heart and brain in patients affected by ischaemic stroke. First,
stroke and IHD share the same risk factors.150 Moreover, ischae-
mic stroke is caused by IHD in about 20% of cases. In this context,
stroke due to atrial fibrillation is more common in women as com-
pared with men, particularly at an older age. Stroke is also asso-
ciated with worse outcomes in women, as shown by the higher
all-cause mortality rate in this population.151 Furthermore, a strong
interaction between stroke andHF is well established given that HF
induces a state of hypercoagulability thereby leading to decreased
blood flow velocity, endothelial dysfunction, enhanced platelet ag-
gregation, as well as reduced fibrinolysis152 all of which increase
stroke risk and, consequently, morbidity and mortality of HF pa-
tients.152 Second, cardiac complications represent the second lead-
ing cause of mortality after stroke.153 Indeed, after the index event,
patients may present with a broad range of cardiovascular signs and
symptoms (stroke–heart syndrome), including electrocardiogram
alterations, elevation of cardiac biomarkers, cardiac dysfunction, ar-
rhythmia, andmyocardial infarction.36 The extent and burden of car-
diac complications after stroke correlates with the site of the brain
injury and the severity of the index event.154,155 Notably, several
large population-based studies showed a sex-specific risk of
MACE after stroke156,157 with a higher incidence of MACE, cardio-
vascular mortality, and HF in women as compared to men.157

In addition to neurological dysfunction, ischaemic stroke is also
associated with an increased risk of acute cardiac events and chron-
ic HF. The hypothesis supporting the pathophysiology of the
stroke–heart syndrome is based on the concept that stroke da-
mages specific brain areas of the central autonomic network. As
with strong emotions, such as fear, this may lead to an overacti-
vated stress response that triggers the autonomic nervous system
and theHPA axis.36,150,153 As such, the excessive release of cortisol
and catecholamines has a detrimental effect on the heart, causing
cardiomyocyte necrosis, hypertrophy, and myocardial fibrosis.150

In a population of 222 consecutive patients admitted due to ischae-
mic stroke, high troponin I levels were significantly associated
with elevation of circulating catecholamines, supporting the con-
cept of an hyperactivation of the sympathoadrenal system.158

Inflammation represents an additional linking factor since the local
inflammatory response induced by stroke extends into the system-
ic circulation, hence yielding secondary cardiac damage.150 In an
animal model of stroke induced by transient ligation of the middle
cerebral artery, PET imaging showed an association between neu-
roinflammation and cardiac inflammation, as detected by an in-
creased TSPO uptake as well as by a persisting decline in cardiac
contractility.159 At a molecular level, the activation of SNS and
HPA axis translates into the activation of forkhead box O
(FOXO) genes. FOXO genes have recently been identified as po-
tential molecular target for cardiac dysfunction since they are asso-
ciated with an increased risk of myocardial infarction.150 It is likely
that the known sex differences in stress response, autonomic func-
tion, and the related inflammatory response may disproportionally
affect women after stroke.160,161

Depression
While depression is evenly distributed between both sexes during
childhood, sex and gender imbalance starts at the age of twelve
and peaks during puberty, with young women being up to three-fold
more often affected than young men.162,163 Thereafter, the well-
known female-male ratio of 2:1 remains stable over the entire adult
lifespan. Current evidence supports an association between de-
pression and cardiovascular disease. The prevalence of cardiac co-
morbidities among adult patients with depression is approximately
three-fold greater than in the general populationwithoutmood disor-
ders.164,165 On the other hand, the presence of depressive symptoms
is independently associatedwith higher cardiac and all-causemortality,
re-hospitalization, and quality of life after AMI.166 Therefore, the
European Society of Cardiology recently listed depression as a
modifiable cardiovascular risk factor in patients with CAD.108 Of
note, anti-depressant medication, such as escitalopram and sertra-
line, has been shown to be an effective therapeutic strategy to im-
prove long-term cardiovascular outcomes in both sexes.167

The prevalence of depression after AMI is higher in women than
men.166,168 This likely occurs as the result of the combined effect of
sex-related differences in several mechanisms involved in heart–
brain crosstalk. To begin with, a number of fMRI studies have linked
anxiety and depressive disorders to the hyperactivation of the
amygdala, insula, and anterior cingulate cortex.169 In particular,
trait anxiety in post-puberal females has been shown to be
mediated by elevated perfusion in the left amygdala.170 Second, de-
pression has been associated with a greater activation of the SNS,
as demonstrated by a reduced HRV in patients with depressive dis-
orders.171,172 Again, this phenomenon is more pronounced in wo-
men with depression as compared with men173 and appears to
mediate the detrimental interaction between depression and car-
diovascular health.174 Next, reduced HRV has been linked to per-
ipheral inflammation, another potential mechanism connecting
depression and cardiovascular disease.175 A Mendelian randomiza-
tion analysis reported that triglycerides, IL-6, and CRP are likely to
be causally linked to depression, thus representing promising fu-
ture targets for pharmacological therapies.176 Accordingly, incre-
mented levels of inflammatory markers, such as CRP and IL-6,
are commonly being measured in patients with depression, and
this finding is more pronounced in women.177,178 Finally, sex hor-
mones, such as progesterone, testosterone, and high oestrogen
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levels, are known to be anti-inflammatory and protective in terms
of depression.179 Conversely, lower oestrogen levels have been
shown to exert detrimental pro-inflammatory effects during hor-
monal transition periods such as post-partum and peri-
menopause,180–182 explaining the higher vulnerability of women
to the coexistence of depression and cardiovascular disease. In
men with depressive disorders, testosterone treatment has been
associated with a moderate anti-depressant effect as compared
with placebo.183

Dementia
Dementia overall affects women twice as often as men.184

Apolipoprotein E epsilon 4 (ApoE4) is the strongest genetic risk
factor for Alzheimer’s disease. Although the frequency of ApoE4
genotype is similar between women and men, the risk of
Alzheimer’s disease in ApoE4 carriers is higher in women than
men between 65 and 75 years.185

The heart–brain axis has been identified as a potential contribu-
tor to the pathogenesis and progression of degenerative diseases.
Indeed, cognitive impairment is more common in patients with pre-
vious myocardial infarction and chronic HF.186,187 Similarly, athero-
sclerosis has been identified as a risk factor for Alzheimer’s disease,
with endothelial dysfunction and impaired microcirculation being
strictly connected to the functional decline.188,189 In this context,
ApoE has been reported to be the link between neuroinflamma-
tion and atherosclerosis in Alzheimer patients.190 In addition,
TSPO-target whole-body molecular imaging confirmed the role
of inflammation as the critical connector between the heart and
the brain after cardiac injury by detecting microglia activation in
the early phase of post-myocardial infarction and in the late phase
of chronic HF.77 This is of paramount importance since inflamma-
tion represents a potential therapeutic target for decelerating cog-
nitive decline.77

Current evidence suggests also that several heart conditions are
linked to dementia in a sex-specific manner.191 First, hypertension
has been associated with vascular dementia and Alzheimer’s dis-
ease.192 Indeed, both elevated BP and high variability in BP com-
promise the structural integrity of the cerebral microvasculature
by impairing cerebral blood supply and promoting neuroinflamma-
tion through disruption of the blood–brain barrier.193,194 The
LIFE-Adult study demonstrated independent and significant asso-
ciations between white matter lesions and age as well as high BP,
stroke, and HF. HF patients had a 2.5-fold increased likelihood of
white matter lesions than those without HF. In addition, white mat-
ter lesions increased with the duration of HF.195 Regional cerebral
hypoperfusion has been identified in several brain areas of patients
with HF, affecting autonomic, mood, and cognitive regulatory cere-
bral sites.152,196 Of note, women suffering from hypertension have
shown worse cognitive performance than normotensive women in
the postmenopausal period.197

Conclusion and outlook
The crosstalk between heart and brain is complex, multifactorial,
and still insufficiently defined. An additional layer of complexity is
added by sex and gender differences that characterize the heart–

brain axis, partially explaining sexual dimorphism in epidemiology,
pathogenesis, clinical manifestation, and treatment responses of
specific heart and brain diseases. Sex hormones, neurohumoral ac-
tivity, and systemic inflammation are potential pathways mediating
sex differences in heart–brain interactions. As many of these path-
ways represent pharmacological targets, further investigation of
molecular mechanisms that regulate the heart–brain axis offers
the possibility to interrupt pathogenetic transmission, thereby
leading to novel individualized treatment approaches. However,
many knowledge gaps remain (Table 3). As such, the effect of socio-
cultural gender on heart–brain interactions is largely unknown, al-
though increasing evidence emphasizes the importance of both,
biological attributes and gender as major modifiers of health and
disease.8 As the mechanisms contributing to the excess risk in wo-
men with myocardial infarction remain largely unclear, gender-
specific research identifying novel targets reflecting women’s bio-
logical systems and behaviour is also urgently needed. As such,
the brain’s stress network and its downstream consequences is a
promising signalling pathway given the predisposition of women
to mental stress-induced ischaemia and sympathetic over-activity.
Indeed, designing therapies and interventions that can interrupt a
vicious cycle between stress and cardiovascular events is an at-
tractive strategy to target cardiovascular health inequalities be-
tween women and men linked to modifiable risk factors. Future
research will also have to investigate the directionality and causality
of heart–brain interactions, thus, the currently evolving field of
neurocardiology promises to be very active in the upcoming years.
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