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Unexpected cardiac adverse effects are the leading causes of discontinuation of clinical trials and withdrawal of drugs from the market.
Since the original observations in the mid-90s, it has been well established that cardiovascular risk factors and comorbidities (such as age-
ing, hyperlipidaemia, and diabetes) and their medications (e.g. nitrate tolerance, adenosine triphosphate-dependent potassium inhibitor
antidiabetic drugs, statins, etc.) may interfere with cardiac ischaemic tolerance and endogenous cardioprotective signalling pathways.
Indeed drugs may exert unwanted effects on the diseased and treated heart that is hidden in the healthy myocardium. Hidden cardiotoxic
effects may be due to (i) drug-induced enhancement of deleterious signalling due to ischaemia/reperfusion injury and/or the presence of
risk factors and/or (ii) inhibition of cardioprotective survival signalling pathways, both of which may lead to ischaemia-related cell death
and/or pro-arrhythmic effects. This led to a novel concept of ‘hidden cardiotoxicity’, defined as cardiotoxity of a drug that manifests only
in the diseased heart with e.g. ischaemia/reperfusion injury and/or in the presence of its major comorbidities. Little is known on the mech-
anism of hidden cardiotoxocity, moreover, hidden cardiotoxicity cannot be revealed by the routinely used non-clinical cardiac safety
testing methods on healthy animals or tissues. Therefore, here, we emphasize the need for development of novel cardiac safety testing
platform involving combined experimental models of cardiac diseases (especially myocardial ischaemia/reperfusion and ischaemic condi-
tioning) in the presence and absence of major cardiovascular comorbidities and/or cotreatments.
...................................................................................................................................................................................................
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‘Hidden cardiotoxicity’: definition
of term

Over the last 60 years, 462 medicinal products were withdrawn from
the market for toxicity reasons, either worldwide or in one country
only.1 Deaths, hepatic, cardiac, and nervous system toxicity
accounted for most of the drug withdrawals.2 While among the with-
drawn drugs are many analgesics, controversy still surrounds the use
of some approved analgesics for pain management,3 since they might

induce cardiotoxicity at higher concentrations.4 Thus drug-induced
cardiotoxicity is a major problem, even occurring after introduction
of the drug on the market. One explanation for these unwanted drug
actions relates to the fact that current cardiac safety testing platforms
focus on investigations of the unwanted actions of drug candidates
on cardiac electrophysiology including some ion channels only in
healthy animals/tissue (‘direct toxicity’), while the effects of drugs on
the heart (tissue), however, may be altered in the presence of
comorbidities/cotreatments since they affect ion channel expression
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and/or activity, mitochondrial function, electro-mechanical coupling,
and modification of extracellular matrix composition favouring the in-
duction of arrhythmias, contractile dysfunction, and potentially cardi-
omyocyte death. Thus, toxic drug effects can be ‘hidden’ when safety
testing is only done in healthy heart (tissue) but may become obvious
in the diseased state (‘hidden toxicity’). Thus, we define ‘hidden cardi-
otoxicity’ as toxicity that manifests only in the diseased state, e.g. in
the heart during ischaemia/reperfusion injury and/or in the presence
of major comorbidities leading to cardiovascular disease(s).

The major clinical importance of the novel concept of hidden
cardiotoxicity is that it may lead to development of safety test-
ing platforms that can detect hidden cardiotoxicity at the early
pre-clinical stage, thereby preventing clinical trials and marketing
of potentially cardiotoxic drugs, decrease the overall cost
of development via increasing the success rate of drug development.

Drug-induced arrhythmias

Anti-arrhythmic drugs have been associated with relatively frequent
pro-arrhythmic adverse effects for a long time. They may prolong the
duration of repolarization and induce Torsades de Pointes (TdP) ven-
tricular tachycardia that can degenerate into ventricular fibrillation,5

or they may impair impulse conduction. On the other hand, there
has been growing concern regarding the very rare provocation of
TdP and sudden cardiac death by several non-cardiovascular drugs,6

although the prevalence of arrhythmias associated with these non-
cardiac drugs is very low (0.01–0.001%).

Unexpected pro-arrhythmic events associated with drug adminis-
tration following myocardial infarction are best illustrated by the his-
torical CAST and SWORD clinical trials that studied the effects of
sodium and potassium channel inhibitor anti-arrhythmic drugs in
post-myocardial infarction patients with impaired left ventricular
function.7,8 Both trials were discontinued before completion due to
increased all-cause mortality in patients assigned to treatment. In add-
ition to the well-known acute ventricular arrhythmias occurring with-
in a few minutes to hours following myocardial infarction,
arrhythmogenic structural, and electric remodelling of the heart
develops in the course of days to weeks favouring arrhythmogenesis
(for review, see ref.9) The remodelling process in the surviving
border zone tissue causes slowed impulse conduction, abnormal
cell-to-cell coupling, and generation of early after-depolarizations
[due to fibrosis, reduced connexin expression, ion channel (sodium,
calcium, potassium) down-regulation], all promoting the induction
and maintenance of re-entry type arrhythmias.10 It is conceivable,
therefore, that cardiovascular and non-cardiovascular drugs with so-
dium channel blocking properties will further exacerbate these
abnormalities (i.e. they induce unidirectional conduction block in tis-
sue previously exhibiting slowed conduction) and can precipitate
arrhythmias during ischaemia and following myocardial infarction. In
this regard, some non-steroidal anti-inflammatory drugs (NSAIDs)
and selective cyclooxygenase 2 (COX2) inhibitors were found to
block cardiac ionic currents.11,12 A meta-analysis by Trelle et al.13

showed that most NSAIDs administered chronically increased mor-
bidity and mortality in patients with cardiovascular disease. Clinically
relevant cardiotoxicity is associated with the anti-emetics domperi-
done and metoclopramide due to their rather potent and local anaes-
thetic-like inhibition of cardiac sodium channels, leading to

cardiovascular side effects such as malignant arrhythmias.14 Inhibition
of the hERG (human Ether-a-go-go Related Gene) channel by cloza-
pine also results in clinically overt cardiotoxicity.15,16

‘Hidden’ cardiac electrophysiological toxic effects of drugs can be
also based on impairment of the repolarization process, which con-
tributes to the weakening of repolarization reserve and enhancement
of the arrhythmia substrate. The concept of repolarization reserve
suggests that myocardial repolarization is redundant, and congenital
or acquired loss of function of a repolarizing current and/or gain of
function of a depolarizing current may not manifest as marked QT-
interval prolongation on the electrocardiogram because other repo-
larizing currents can compensate.17,18 The repolarizing IKs potassium
current was found to play a key role in repolarization reserve.19,20

Importantly, as part of electrical remodelling in myocardial infarction,
chronic heart failure, cardiac hypertrophy, diabetes mellitus, the
down-regulation of various potassium currents was observed.21–23

The possible combination of down-regulation, acute pharmacological
block, or congenital loss of function of potassium channels—as mul-
tiple hits on repolarization—leads to impaired repolarization reserve
and a consequent increase in susceptibility to ventricular arrhyth-
mias.18,24–26 In the presence of proper triggers, otherwise harmless
non-cardiovascular drugs even with mild potassium channel blocking
effects can provoke unexpected but serious ventricular arrhythmias
and sudden cardiac death, as illustrated on Figure 1.

Diseases such as heart failure, hypertrophic cardiomyopathy, and
ion channelopathies can provide arrhythmia trigger mechanisms as
well. The expressions of sodium-calcium exchanger and the funny
channel are enhanced in the failing myocardium.27,28 Delayed after-
depolarizations can develop and cause triggered activity in congestive
heart failure due to spontaneous calcium leak from the sarcoplasmic
reticulum.29,30 Catecholaminergic polymorphic ventricular tachycar-
dia triggers arrhythmias by abnormally increasing calcium release
from the sarcoplasmic reticulum following beta-adrenergic stimula-
tion as a consequence of mutations in the ryanodine receptor or cal-
sequestrin.31,32 Athlete’s heart may represent a special example,
where increased physical demand leads to compensatory electrical
and structural remodelling manifested by cardiac hypertrophy,33

interstitial myocardial fibrosis,34 bradycardia,35,36 and increased repo-
larization heterogeneity making these hearts more susceptible to
arrhythmias following additional challenges such as non-cardiovascu-
lar drugs, dietary ingredients, or certain doping agents.37

Thus, the reliable assessment of pro-arrhythmic potential during
drug development is essential. Current pre-clinical and clinical guide-
lines on cardiac electrophysiological safety testing advocate pro-
arrhythmic potential studies in cell lines, healthy tissues, isolated
hearts, animals, and healthy human volunteers, and mainly concen-
trate on hERG channel inhibition and repolarization prolonging
effects of drug candidates,38,39 not representing patients who exhibit
increased arrhythmia susceptibility. There is an unmet need for more
reliable models representing vulnerable patients for arrhythmias,
with structural heart disease,24 reduced repolarization reserve,18

and/or other comorbidities. In addition, species dependent cardiac
electrophysiological differences in pro-arrhythmia studies need to be
considered when extrapolating results to humans.40,41

A selection of drugs found to cause unexpected serious ventricular
arrhythmias and/or sudden cardiac death as ‘hidden cardiotoxicity’ is
presented in Table 1.
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Drug-induced cardiac dysfunction
and/or irreversible myocardial
injury
Cardiac dysfunction might occur either by (i) directly affecting
cardiomyocyte function through modification of excitation-
contraction coupling and/or intracellular calcium homeostasis and/or
mitochondrial function42 or (ii) alterations of loading conditions (pre-
load reserve/afterload mismatch)43 or heart rate (force-frequency re-
lation)44 or (iii) alterations of the extracellular matrix composition.45

Irreversible myocardial injury may develop via different types of
cell death mechanisms such as necrosis, apoptosis, necroptosis, and
possibly altered autophagy. Necrosis is an energy-independent pro-
cess that results in the disintegration of cells in living tissue, which
could be exacerbated in the presence of compounds with ‘hidden

cardiotoxicity’. The point of no return in necrosis is when the suffi-
cient amount of energy for the maintenance of membrane potential
and integrity is no longer available. The extent of necrotic tissue can
be described either by histology,46 magnetic resonance imaging,47 or
by measuring release of cellular components (e.g. lactate dehydro-
genase, troponin I or T48). Apoptosis is an adenosine triphosphate-
dependent, regulated process in which activation of effector caspases
occur due to loss of mitochondrial membrane potential (intrinsic
pathway) or activation of tumour necrosis factor receptors (exstrin-
sic pathway).49,50 Apoptosis can be characterized by e.g. caspase 3 ac-
tivation,51 annexin-V externalization,52 or the TUNEL assay.53

Necroptosis, is a recently described form of caspase-independent
programmed cell death,54 which could also be assessed to
further explore details of cell death mechanisms.49,54 Autophagy is a
pro-survival mechanism, which provides energy for cells via

Figure 1 Schematic illustration of the role of impaired repolarization reserve in drug-induced arrhythmias in healthy and diseased cardiac tissue
(hidden cardiotoxicity). In healthy myocardium (upper panel), the slow delayed rectifier (IKs), and the inward rectifier (IK1) potassium currents, key
components of repolarization reserve, counteract the mild repolarization prolonging (mostly due to hERG/IKr blocking) effect of drugs. Therefore,
repolarization (action potential duration) is only slightly prolonged and no arrhythmias occur. The proarrhythmic side effect of the drug remains hid-
den in normal conditions. However, in the diseased heart (lower panel), a number of congenital, and acquired pathological conditions lead to electric-
al and/or structural remodelling featuring impaired function and/or down-regulation of repolarizing currents, consequently, leading to reduced
repolarization reserve and increased arrhythmia susceptibility. Without the compensating effect of IKs/IK1 activation, drug administration can lead to
lethal ventricular arrhythmias. The hidden cardiotoxicity of the drug is revealed.
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consuming their own components.55 However, in a number of stud-
ies, excessive activation of autophagic processes resulted in apoptot-
ic- or necrotic cell death.56 Therefore, the autophagy should be
determined as dynamic process, by assessing autophagic flux.57 Drugs
that may exacerbate these cell death signalling pathways in different
conditions of comorbidities may potentially show hidden cardiotoxic
effects, however, current pre-clinical safety testing does not require
testing these pathways.

Direct vascular and/or cardiotoxicity
Apart from their arrhythmogenic potential, analysis of various pre-
clinical data, meta-analysis and observational studies showed that
COX2 inhibitors and NSAIDs increase the risk of vascular and
cardiotoxicity.

Although COX2 is regarded an inducible enzyme, experimental
and clinical studies suggest that COX2 is constitutively expressed in
some tissues, among them in the vascular endothelium, where it con-
tributes to the maintenance of vascular homeostasis and integrity.58

Selective depletion of COX2 in vascular smooth muscle cells and
endothelial cells depresses biosynthesis of prostaglandins and accel-
erates atherogenesis in low-density lipoprotein receptor knockout
mice59 and suppression of COX2 activity increases leucocyte adher-
ence to endothelial cells of normo- and hypertensive rats60 and
increases smooth muscle cell calcification in mice with impaired kid-
ney function.61 Impairment of endothelial cell prostaglandin synthesis

by COX2 inhibition elevates blood pressure59,60 and diminishing
COX2 expression or activity in hematopoietic cells can result in a
predisposition to salt-sensitive hypertension.62 Together with
increased platelet reactivity following COX2 inhibition (for review,
see ref.63) these effects might lead to an increase in vascular toxicity
and cardiovascular risk (for review, see ref.64)

The vascular and/or cardiotoxic risk depends on the dose, dur-
ation, and frequency of NSAID administration.65 For example, the
NSAID diclofenac induces proteasome and mitochondrial dysfunc-
tion in murine cardiomyocytes and hearts leading to an increase in re-
active oxygen species (ROS) formation and altered protein
turnover.66 The reduction of the dose of NSAIDs may mitigate, but
not avoid, the risk of cardiovascular adverse effects.67

Numerous commonly used drugs such as certain anticancer
medications [anthracyclines—(Doxorubicin/Adriamycin), cisplatin
(Platinol), trastuzumab (Herceptin), imatinib (Gleevec), mitoxan-
trone (Novantrone), arsenic trioxide (Trisenox), bevacizumab
(Avastin), sunitinib (Sutent), and sorafenib (Nevaxar)], the antiretro-
viral compound azidothymidine (AZT, Zidovudine), and several oral
antidiabetics [e.g. rosiglitazone (Avandia)], likewise various substan-
ces of abuse [e.g. alcohol, methamphetamine, ecstasy, cocaine, and
synthetic cannabinoids (K2, spice)] may induce direct cardiotoxic-
ity.68 This cardiotoxicity is sometimes dose- and time-dependent, but
may also develop unpredictably years after the initial drug exposure,
more frequently in patients with cardiovascular comorbidities
(Figure 2).

....................................................................................................................................................................................................................

Table 1 Selected examples of drugs associated with possible hidden cardiotoxicity based on adverse electrophysio-
logical actions

Drug class Compound Possible arrhythmogenic mechanism(s)

Antibiotics Erythromycin, clarithromycin hERG inhibition

Grepafloxacine, sparfloxacine hERG inhibition

Antidepressants Imipramine INa, hERG inhibition

Fluoxetine INa, ICa, L, hERG current and trafficking block

Citalopram hERG current and trafficking inhibition

Antiepileptics Retigabine hERG, INa inhibition

Lacosamide INa inhibition

Antifungal agents Fluconazole hERG current and trafficking inhibition

Antihistamines Astemizole hERG inhibition

Terfenadine INa, hERG inhibition

Antimuscarinics Terodiline hERG inhibition

Antipsychotics Haloperidol hERG inhibition

Risperidone hERG inhibition

Clozapine hERG inhibition

ß2-agonists Salbutamol hERG inhibition

NSAIDs Diclofenac INa, hERG, IKs inhibition

Celecoxib INa, hERG, IKs inhibition

Opioid analgesics Methadone INa, hERG inhibition

PDE inhibitors Milrinone (PDE3 inhibitor) cAMP dependent SR Ca2þ release, If activation

Vardenafil (PDE5 inhibitor) hERG inhibition

Prokinetics Cisapride hERG inhibition

Vasodilators Bepridil hERG, INa inhibition

hERG, human ether-a-go-go-related gene potassium current; If, hyperpolarization-activated cyclic nucleotide gated pacemaker ‘funny’ current; IKs, slow component of the
delayed rectifier potassium current; INa, voltage-gated sodium current; NSAIDs, non-steroidal anti-inflammatory drugs; PDE, phosphodiesterase; SR, sarcoplasmic reticulum.

1774 P. Ferdinandy et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/eurheartj/article-abstract/40/22/1771/5047856 by guest on 23 July 2019



..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.
Multiple lines of evidence suggest that direct or indirect

mitochondria-related toxicity is an important common effector
mechanism of drug-induced direct cardiotoxicity. Mitochondrial tox-
icity may develop as a consequence of interference with the mito-
chondrial respiratory chain (e.g. uncoupling) or due to inhibition of
the important mitochondrial enzymes (oxidative phosphorylation,
Szent-Györgyi–Krebs cycle, mitochondrial DNA replication) among
others. All these may facilitate increased generation of mitochondrial
ROS, calcium overload, depletion of cellular nicotinamide-adenine-
dinucleotide (NADþ) and adenosine triphosphate, and opening of
the mitochondrial permeability transition pore with consequent trig-
gering of apoptotic and/or necrotic cell death pathways.68

Doxorubicin is still a commonly used effective and broad spectrum
antineoplastic agent despite its dose limiting cumulative cardiotoxic-
ity. Among all cardiotoxic agents the mechanisms of doxorubicin-
induced cardiotoxicity are among the best characterized, yet very
complex and not completely understood. These will be briefly dis-
cussed in the following paragraphs, while for the discussion of the
mechanisms of other direct cardiotoxic drugs, we would like to refer
readers to recent overviews on the subject.68–70

Cardiomyocytes and endothelial cells are particularly sensitive to
the direct toxic effects of doxorubicin. In the mitochondria of these
cells doxorubicin via non-enzymatic redox cycling71–74 or iron-de-
pendent75–77 processes triggers increased generation of ROS (e.g.
superoxide anion). Mitochondrial iron accumulation due to defective
function of ABCB8, a mitochondrial protein that facilitates iron ex-
port, may also contribute to the deleterious effects of doxorubicin in
cardiomyocytes.77 Superoxide anion can be converted to hydrogen
peroxide by mitochondrial superoxide dismutase or via diffusion-
limited reaction it can rapidly react with nitric oxide to form peroxy-
nitrite,78 a potent oxidant and cytotoxic reactive nitrogen species
(RNS) that promotes mitochondrial protein oxidation/nitration and

initiation of cell death pathways.79,80 Doxorubicin can also directly
bind to mitochondrial abundant phospholipid, cardiolipin and can
form adducts with mitochondrial DNA,81 and activate matrix metal-
loproteinases.82 Nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase 2 has also been proposed to contribute to
doxorubicin-induced ROS generation in the heart.79,83,84

The doxorubicin-induced cardiotoxicity also involves disruption of
key antioxidant mechanisms. Conversely, interventions aimed to en-
hance the key antioxidant defence systems (e.g. manganese super-
oxide dismutase85; catalase86; metallothionein,87 thioredoxin-188;
glutaredoxin 289; and glutathione levels90) and to neutralize the mito-
chondrial ROS/RNS by mitochondrialy targeted antioxidants91 have
demonstrated cardioprotective effects in rodent models of
doxorubicin-induced cardiomyopathy, the latter without interfer-
ence with its antitumour activity. The doxorubicin induced increased
ROS/RNS generation coupled with impaired antioxidant defence
eventualy leads to oxidative DNA injury and consequent activation
of the nuclear enzyme poly(ADP)-ribose polymerase 1 (PARP-1)
resulting in cellular depletion of NADþ and adenosine triphosphate
triggering cell death (both apoptotic or necrotic).92 Poly(ADP)-ri-
bose polymerase 1 genetic deletion and inhibition is protective
against doxorubicin-induced cardiotoxicity in mice92,93 Logically
PARP inhibitors (e.g. the Federal Drug Administration approved anti-
cancer drug olaparib to treat specific forms of ovarian cancer), could
be combined with doxorubicin or cisplatin, due to potentially
increased chemotherapeutic efficacy and decreased cardiotoxic-
ity.68,92–94

Cardiomyocytes as non-dividing cells are considerably less sensi-
tive to the topoisomerase inhibiting adverse effect of doxorubicin.
However, the topoisomerase isoenzyme IIb is essential in maintaining
normal transcriptional activity in cardiomyocytes, and it has specific
function in the maintenance of mitochondrial DNA, allowing

Hidden
cardiotoxicity

(e.g. Cox2 
inhibitors) 

Hidden
cardiotoxicity 

(e.g. nitrate 
tolerance, 

statins) 

deleterious cardiac 
cell signalling

survival 
signalling

survival of cardiac 
myocytes  

Ischemic conditioning, 
cardioprotective drugs 

Drug-induced
cardiotoxicity

death of cardiac myocytes, 
electric imbalance 

(infarction, heart failure, 
arrhythmias)  

Ischemia/reperfusion 
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Figure 2 Influence of ischemia/reperfusion injury and cardiovascular risk factors on cardiotoxic effects of drugs. Hidden cardiotoxicity of a drug is
revealed if the drug inhibits cell survival signalling or activates deleterious cell signalling induced by cardiac diseases especially ischemia/reperfusion in-
jury and/or its major risk factors including their comedications. APD, action potential duration; HERG, human ether-a-go-go-related gene potassium
channel; LQTs, long QT syndromes; SCD, sudden cardiac death.
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.
mitochondrial transcription and replication.95 Accordingly, this en-
zyme is critically involved in cardiomyocyte-specific toxicity of
doxorubicin.96

The above mentioned examples of doxorubicin-induced dose-de-
pendent cumulative cardiotoxicity illustrate the complexity and the
need for better understanding the common mechanisms of drug-
induced direct cardiotoxicity to develop more effective screening
strategies97 and models98,99 both in the clinical100,101 as well as in the
pre-clinical settings. These efforts should also focus on identification
of toxicity biomarkers,102 patient at risk,103 development of more ef-
ficient targeted drug delivery systems104–106 allowing reduction of
the dose, and use of personalized prophylactic cardioprotective
therapies.107

‘Hidden toxicity’
Since the original observations in the mid-90s, it has been well estab-
lished that cardiovascular risk factors and comorbidities and their
medications may interfere with cardiac ischaemic tolerance and en-
dogenous cardioprotective signalling pathways by several cellular
mechanisms including robust changes in cardiac gene expression pro-
file at the transcript level [coding and non-coding ribonucleic acid
(RNA)s] including transcripts of ion channels, enzymes involved in
mitochondrial energy metabolism, transcription factors, etc. (for ex-
tensive reviews, see refs108–112) Therefore, drugs may exert ‘hidden’
cardiotoxic actions on the diseased heart via interfering with cell
death and cardioprotective signalling.109,110 Some examples of drugs
that show(ed) ‘hidden cardiotoxic’ effects that can be evidenced only
in the comorbid, ischaemic heart are provided below.

The hidden cardiotoxic effect of a compound has been proven for
the first time by an elegant study by Golomb et al.113 They showed
that that subtoxic dosage of a known ‘direct’ cardiotoxic agent bis(2-
chloroethoxy)methane may cause ‘hidden’ cardiotoxicity as revealed
by impaired mitochondrial function only under ischaemic conditions.

Nitrate tolerance developing due to long-term use of nitrates,
long-term use of statins, ATP-dependent potassium channel blocker
anti-diabetic drugs, and COX2 inhibitors have been shown to inter-
fere with ischaemia/reperfusion injury and the effect of endogenous
cardioprotection (for reviews, see refs109–111) High-dose glyceryl
trinitrate-induced nitrate tolerance blocked both pre- and post-con-
ditioning114,115 and long-term use of statins antagonized the cardio-
protective effect of ischaemic post-conditioning.116 Several studies
demonstrated that ATP-dependent potassium channel blockers in-
crease ischaemia/reperfusion injury and block the cardioprotective
effect of ischaemic conditioning. Thus, it might not be surprising that
ATP-dependent potassium channel blockers increase the risk of
major adverse cardiac events and cardiovascular death in diabetic
patients (especially with concomitant heart disease).117 Angiotensin
converting enzyme (ACE) inhibitors reduce irreversible ischaemia/
reperfusion injury, delay heart failure progression and are additive to
or restore endogenous cardioprotection.118,119 Angiotensin convert-
ing enzyme transforms angiotensin I to angiotensin II, and also pro-
motes the degradation of bradykinin into inactive metabolites.
Bradykinin stimulates nitric oxide synthesis and synthesis of vasodila-
tor prostaglandin via a COX pathway. Moreover, COX2 activation is
also involved in endogenous cardioprotective signalling.120 COX
inhibitors may therefore be deleterious in cardiovascular disease by
counteracting part of ACE inhibitor efficacy. This has been clearly

demonstrated with NSAIDs in hypertension, coronary artery disease,
and chronic heart failure and most guidelines recommend avoiding
their use in such patients.121

Apart from its direct cardiotoxic effects (as outlined above), doxo-
rubicin depletes GATA-4, which in turn causes cardiomyocyte apop-
tosis.122 Endogenous cardioprotection increased GATA-4
expression and activity in the heart, thereby increasing affecting cardi-
omyocyte survival.123 Thus, depletion of GATA-4 by doxorubicin
might interfere with endogenous cardioprotection and thus add a
component of ‘hidden toxicity’ to the well-established direct toxicity
of doxorubicin.

Need for novel assays to predict
cardiotoxicity thereby increasing
drug safety

Novel assays for early pre-clinical detection of cardiotoxicity of drugs
are of great importance to increase success rate of drug development
and patient safety. Using three-dimensional cardiac tissues derived
from human-induced pluripotent stem cells (3D-hiPSC-CT) a
doxorubicin-sensitive cytotoxicity and hERG channel blocker-
sensitive change in electrical activity was detected, indicating its po-
tential usefulness as drug screening system for drug discovery124 (for
review, see ref.125) Similarly, using hiPSC-cardiomyocytes, drug
effects on ROS production, intracellular calcium concentration, for-
mation of DNA double strand breaks, gene or micro RNA expres-
sion, and electrophysiological properties can be quantified102,126,127

and together with parallel assessment of motion field imaging-derived
contractile properties thus allow a better risk estimation of cardio-
toxic drug effects.128,129 In hiPSC-cardiomyocytes exposed to doxo-
rubicin changes in microRNA expression occurred before the
occurrence of cytotoxicity markers such as lactate dehydrogenase,
and the affected microRNAs also demonstrated a significant involve-
ment in heart failure in patients and animal models.102 Thus, early
changes in microRNA expression might also allow to predict cardio-
toxicity in patients.130–132

However, all of these detection assays fail to address the issue of
the importance of comorbidities and cotreatments and thus do not
detect ‘hidden’ cardiotoxicity of drugs.

Therefore, we urge the need for development of novel car-
diac safety testing platforms involving combined experimental
models of various cardiac diseases, especially myocardial ischae-
mia/reperfusion and ischaemic conditioning in the presence and
absence of major cardiovascular risk factors and comorbidities
such as e.g. ageing, hyperlipidaemia, and diabetes and their major
cotreatments. Although these additional tests will definitely in-
crease the time and cost for pre-clinical safety testing, via the
early detection of hidden cardiotoxicity of drugs it will ultimately
lead to (Figure 3):

• overall saving of time and cost of drug development for the
pharmaceutical industry by early pre-clinical termination of the de-
velopment of potentially cardiotoxic compounds;

• increasing success rate of clinical drug development by more ra-
tional design of clinical trials to enroll patients that are not prone
to manifest certain cardiotoxic side effects of a drug with potential
hidden cardiotoxity in a disease condition;
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.• increased patient safety by preventing the clinical testing and clinic-
al use of potentially cardiotoxic drugs in patient populations that
are prone to manifest hidden cardiotoxicity.

As an example, in case the potential cardiotoxic effect of rofecoxib
(Vioxx) were detected by assays for hidden cardiotoxicity in the early
pre-clinical phase of its development, the manufacturer company
could have saved significant amount of resources burnt for the devel-
opment of rofecoxib and for the still ongoing legal issues related to
its withdrawal from the market in 2004.133,134 Early prediction of hid-
den cardiotoxicity of rofecoxib could have prevented the unexpect-
ed manifestation of myocardial infarction of some patients taking
Vioxx. However, more than a decade after its withdrawal, the mech-
anism of hidden cardiotoxicity of rofecoxib is still a question of de-
bate. However, to increase the productivity of drug development, we
definitely need to increase knowledge on mechanisms and early pre-
diction of drug toxicity (Figure 3).135,136

Conclusion and outline

Cardiotoxicity seen only in the diseased heart with e.g. ischaemia/
reperfusion injury and/or in the presence of its major comorbidities is
termed as ‘hidden cardiotoxicity’. Little is known on the mechanism
of hidden cardiotoxicity and ‘hidden cardiotoxicity’ cannot be
revealed by the routinely used cardiac safety testing methods on
healthy animals or tissues. Therefore, here, we emphasize the need
for development of novel cardiac safety testing platforms involving
combined experimental models of cardiac diseases, especially myo-
cardial ischaemia/reperfusion and ischaemic conditioning in the

presence and absence of major cardiovascular risk factors and
comorbidities such as e.g. ageing, hyperlipidaemia, and diabetes and
their cotreatments.
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