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ABSTRACT

The lymphatic system is an integral part of the circulatory system and plays an important role in the volume homeostasis

of the human body. The complex anatomy and physiology paired with a lack of simple diagnostic tools to study the

lymphatic system have led to an underappreciation of the contribution of the lymphatic system to acute and chronic heart

failure (HF). Herein, we discuss the physiological role of the lymphatic system in volume management and the evidence

demonstrating the dysregulation of the lymphatic system in HF. Further, we discuss the opportunity to target the

lymphatic system in the management of HF and different potential approaches to accessing the lymphatic system.

(J Am Coll Cardiol 2021;78:66–76) © 2021 by the American College of Cardiology Foundation.

T he circulatory system consists of the cardio-
vascular system and the lymphatic system.
The cardiovascular system is a closed, high-

pressure circulatory system with the heart acting as a
central pump, whereas the lymphatic system is an
open, low-pressure circulatory system with no central
pump (1). The lymphatic vessels are present in almost
all tissues except bone marrow, cartilage, and cornea
(1). Several liters of fluids are filtered via the semiper-
meablemembrane of the capillaries into the interstitial
space every day. The filtered fluid has important phys-
iological functions, such as tissue nutrition and hydra-
tion. An increase in the amount of the filtered fluid can

lead to interstitial edema with clinical manifestations
such as extremity and tissue edema, including pulmo-
nary edema. The amount of filtered fluids depends on
the Starling equation for fluid filtration (2):

Jv ¼ LpS½ðpc �piÞ� sðpc �piÞ�

where JV is the filtration volume per second, Lp is the
hydraulic conductance of the membrane, S is surface
area for filtration, pc is the capillary hydrostatic
pressure, pi is the interstitial hydrostatic pressure, s is
the reflection coefficient, pc is the oncotic pressure of
the plasma protein, and pi is the oncotic pressure of
the interstitial protein (Figure 1).
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One of the main functions of the lymphatic
vascular system is to collect filtered fluid that accu-
mulates in the interstitial space (mainly water, salts,
and plasma proteins) and return it to the central
venous system. To prevent interstitial edema, the
return of filtered lymph fluid occurs at a rate similar
to the rate of fluid production/accumulation in the
interstitial space (2). After fluid enters the lymphatic
vascular system, it becomes lymph and passes
through lymph nodes, where foreign matter is filtered
and neutralized by the immune system cells (eg,
dendritic cells, macrophages, and lymphocytes) (2).

Although lymph composition was thought to be
similar to that of the plasma, proteomic mapping
has shown unique composition of the tissue-
derived proteins in the lymph (3). Lymph contains
high concentrations of proteins that are involved in
cell catabolism and apoptosis, extracellular matrix

remodeling, and innate immunity (3). Be-
sides its role in fluid hemostasis, lymph acts
as a chemical buffer system, facilitates im-
mune cell trafficking, and transports pro-
teomes to draining lymph nodes (3).

Lymph is returned to the cardiovascular
system through 2 major lymphatic ducts that
empty into the venous system (ie, the right
lymphatic duct and the thoracic duct) (4). The
right lymphatic duct drains lymph from the right side
of thorax, right upper extremity, and right side of
head and neck, and empties into the junction of the
right internal jugular vein and right subclavian vein
(Figure 2) (4). The thoracic duct runs superiorly from
the superior aspect of the cisterna chyli to the lower
cervical spine, drains lymph from all the body except
parts that are drained by the right lymphatic duct,
and empties into the junction of the left internal ju-
gular vein and the left subclavian vein (5). The
thoracic duct terminates as a single duct in the ma-
jority of cases (72%), or less frequently as double
(8.5%), triple (1.8%), or quadruple (2.2%) ducts (6).
The thoracic duct typically returns approximately
1.38 mL/kg/h of lymph to the central venous circula-
tion (5). An increase in the filtration volume (arterial/
venous congestion) is counteracted with an increase
in the amount of filtered lymph fluid and a decrease
in interstitial protein, thus decreasing the oncotic
pressure of the interstitium (7).

FIGURE 1 Basic Principles of Fluid Shifts Between Individual Compartments and Lymph Production
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HIGHLIGHTS

� The lymphatic system is integral to vol-
ume hemostasis.

� The lymphatic system is involved in many
of the clinical manifestations of HF.

� In patients with HF, therapeutic targeting
of the lymphatic system could reduce
congestive symptoms.

AB BR E V I A T I O N S

AND ACRONYM S

CRS = cardiorenal syndrome

CVP = central venous pressure

HF = heart failure

PCWP = pulmonary capillary

wedge pressure

SMC = smooth muscle cells
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Lymphatic vasculature consists of capillaries, pre-
collectors, and collecting lymphatic vessels. Micro-
scopically, lymphatic vasculature is distinct from that
of blood vasculature (8). For example, blood capillaries
are lined with blood vascular endothelial cells, which
are supported by basement membranes, and covered
by smooth muscle-like pericytes, whereas lymphatic
capillaries are composed of a single layer of partly
overlapping lymphatic endothelial cells with no base-
ment membrane or pericytes (8). Pre-collectors are
covered by scant smoothmuscle cells (SMCs) and drain
into the collecting lymphatic vessels, which are more
extensively covered by SMCs (9). Within the lymphatic
vasculature, there are molecular differences in the
profiles of contractile proteins of SMCs (10). For
example, mesenteric lymphatics display all 4 actin
types (ie, cardiac, vascular, enteric, and skeletal a-ac-
tins), whereas the thoracic duct predominantly dis-
plays cardiac and vascular a-actins (10).

DYSREGULATION OF THE LYMPHATIC

SYSTEM IN HEART FAILURE

The lymphatic system is commonly ignored when
considering the pathophysiology of heart failure (HF)
(11), yet its contributions to the observed clinical
manifestations of HF are important (11). HF is marked
by venous congestion (12). Increased central venous
pressure (CVP) is a major determinant of adverse
clinical outcomes (eg, impaired renal function) and is
an independent predictor of mortality in patients
with HF (13). Additionally, most HF hospitalizations
are related to manifestations of venous congestion
rather than low cardiac output (14). Vascular endo-
thelial cells sense biomechanical forces and increased
hydrostatic pressure resulting in a switch from a
quiescent state to an activated state, which is marked
by inflammation, vasoconstriction, and an increase in
oxidative stress (15). Therefore, a chronic state of

FIGURE 2 Anatomy of the Lymphatic System
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Lymph is returned to the cardiovascular system through 2 major lymphatic ducts that empty into the venous system.
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venous congestion can lead to organ damage, such as
pulmonary vascular remodeling, hepatic injury, and
renal injury.

MECHANISMS OF LYMPHATIC CONGESTION

IN HF

Similar to venous congestion, lymphatic congestion is
a hallmark of HF and drives both symptom manifes-
tation and adverse outcomes in this population. In
HF, a number of parallel mechanisms contribute to
the accumulation of interstitial fluid, which manifests
itself clinically as lower and upper extremity edema,
pulmonary edema, hepatic congestion with subse-
quent ascites, renal failure, and increased gut

permeability and decreased absorption (16) (Central
Illustration).

1. Increased filtration. Higher capillary hydrostatic
pressure (aka, venous congestion in the tissue)
results in increased fluid filtration, and thus,
greater extravasation of fluid in the interstitial
space. In the absence of an equivalent increase in
lymph fluid clearance from the tissue, there is both
acute and chronic extravascular fluid
accumulation.

2. Decreased drainage. An increase in CVP prevents
the emptying of lymph via the thoracic duct into
the central venous circulation. Central venous
lymph drainage is a passive process and depends

CENTRAL ILLUSTRATION Dysregulation of the Lymphatic System in Heart Failure
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Fudim, M. et al. J Am Coll Cardiol. 2021;78(1):66–76.

A number of parallel mechanisms contribute to the accumulation of interstitial fluid, which manifests itself clinically as lower and upper

extremity edema, pulmonary edema, hepatic congestion with subsequent ascites, renal failure, and increased gut permeability and decreased

absorption.
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on a negative pressure gradient from tissue /

thoracic duct / central veins.
3. Impaired lymph vessel integrity and compliance.

Increased vascular permeability (aka, vascular
leakage) enhances the extravasation of plasma and
protein with resultant accumulation of interstitial
fluid. HF is characterized by a systemic pro-
inflammatory state (17). Systemic inflammation,
irrespective of the underlying etiology (eg, sepsis,
HF, cancer) increases vascular permeability caused
by disintegration of the vascular barrier; thus,
large molecules, such as proteins, can leak into the
interstitial space (18). This subsequently decreases
the oncotic pressure of plasma and increases the
interstitial oncotic pressure, with a net increase in
filtration volume. In response to the increase in
interstitial fluid accumulation and the need to in-
crease lymph flow, lymphatics adapt via a change
in contractile activity (19). Although this adapta-
tion seems to be effective in acute inflammation,
lymph transport decreases significantly in chronic
inflammation (eg, in HF), which may signify
impaired lymph vessel integrity and compliance in
these states (19). Further, infiltrating neutrophils
during inflammation release neutrophil elastase
that degrades elastin microfibril interfacer 1, thus
weakening the intercellular junctions of lymphatic
endothelial cells with subsequent lymphatic vessel
collapse (20). Additionally, in certain conditions,
such as radiation-induced heart disease, impaired
lymph vessel integrity can contribute to some of
the manifestations of HF (21); radiation can
decrease lymphangiogenesis resulting in extra-
vascular volume accumulation (eg, pericardial
effusion) (21).

4. Dysfunctional lymphatic and lymphovenous
valves. Lymphatic vessels contain lymphatic
valves, which regulate a unidirectional lymph
flow. Dysfunction of the lymphatic valves can lead
to lymph reflux and lymphedema (22). Addition-
ally, lymphovenous valves regulate the return of
lymph to the cardiovascular system (22), although
the role of lymphatic and lymphovenous valves in
HF has not been studied. The chronic increase in
central venous pressure (as seen in HF) may lead to
dysfunctional lymphatic and lymphovenous
valves caused by a retrograde increase in the
lymphatic pressure.

5. Dysregulated renal lymphodynamics. Elevated
inferior vena cava pressure in HF with subsequent
elevation in renal vein pressure results in an in-
crease in renal lymph flow and sodium content and
a decrease in urinary sodium content (23). Further,
increased renal lymph flow accelerates washing

out interstitial proteins with subsequent decrease
in the renal interstitial colloid osmotic pressure,
thus promoting passive sodium reabsorption (23).
These changes result in increased sodium and fluid
retention in HF.

6. Maladaptive lymphangiogenesis resulting in
myocardial remodeling. There is a growing body of
evidence suggesting an important role for the
lymphatic system in counteracting myocardial
edema and inflammation in various ischemic and
nonischemic heart disease conditions. Insufficient
lymphangiogenesis (eg, after myocardial infarc-
tion) can lead to myocardial interstitial fibrosis,
cardiac remodeling, and cardiac dysfunction (24).

Individually, these components are unlikely to
lead to accumulation of interstitial fluid, given that
compensatory mechanisms allow for regulation of
lymph flow across a broad range of perturbations. Yet,
in HF, the previously listed derangements likely
occur in parallel, overwhelming the homeostasis of
lymph production and drainage.

Lymphatic dysfunction and remodeling have
repeatedly been demonstrated in HF-related comor-
bidities, such as type 2 diabetes mellitus (25), hyper-
tension (26), and obesity (27), and with increased age
(28). Diet-induced obesity animal models are associ-
ated with reduced lymphatic capillary density and
reduced dermal lymphatic collecting vessel pumping
rates. Further, increased immune cell accumulation
surrounding lymphatic vessels and impaired vessel
dilatation (reduced local nitric oxide production)
have been described. Decreased lymphangiogenesis
and impaired vessel integrity have been described in
animal models of diabetes mellitus (29). Notably,
impaired lymph drainage can also directly affect the
heart, leading to chronic myocardial edema, inflam-
mation, and fibrosis with resultant cardiac dysfunc-
tion, as shown in animal models of myocardial
infarction (30).

Evidence for an impaired lymphatic system in
humans with HF is limited. Houston et al. (31) showed
that the level of the lymphangiogenic factor vascular
endothelial growth factor-D is positively correlated
with the left heart filling pressures and duration of HF
diagnosis. This finding might suggest a compensatory
mechanism to augment lymphatic clearance of the
congested pulmonary tissue. Recent evidence sug-
gests that in patients with HF and preserved ejection
fraction, the number of lymphatic vessels is
decreased, but diameters are increased (likely caused
by elevated backward pressure from the central
venous system) (32). Impaired lymphatic vessel
compliance likely contributes to a reduced filtration
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coefficient and thus tissue clearance of extravasated
fluid (32).

As fluid builds in the interstitial space, more fluid
would be expected to be drained by the lymphatic
system. In the setting of normal plasma oncotic
pressure, a gradual increase in capillary hydrostatic
pressure is typically compensated by an increase in
lymph flow (7). After a certain capillary hydrostatic
pressure threshold is reached, the lymphatic vascular
system fails to compensate for any further increase in
hydrostatic pressure or increase in filtration volume
within the interstitial space.

In the lungs, for example, an acute increase in
capillary hydrostatic pressure to a value >25 mm Hg
results in pulmonary edema and decreased lung
compliance (7). When hydrostatic pressure is chron-
ically elevated, lymph flow may increase up to 30
times the normal rate (7,33). This may, in part,
explain the absence of pulmonary edema in patients
with HF who have chronically elevated pulmonary
capillary wedge pressure (PCWP) as opposed to pa-
tients with acute elevation in PCWP (eg, in acute

mitral regurgitation) who tend to develop pulmonary
edema even with a small increase in PCWP (33).
Although there is no direct evidence that over-
whelming of the lymphatic system is the driver of
pulmonary edema formation in acute HF, several
studies showed an important role of the lymphatic
system in the management of pressure changes
associated with HF. One of the early studies that
examined this concept was in a dog model (34),
showing that an acute rise in left atrial pressure is
associated with an increase in right duct lymph flow.
The same observation applies to right-sided HF; in
an experiment (35) studying cor pulmonale in dogs,
an increase in systemic venous pressure resulted in
greater formation of capillary filtrate, accumulation
of fluids in the lymphatic reservoir, and increase in
thoracic duct lymph flow. Szabo et al. (36) showed
that thoracic duct pressure increased in parallel to
jugular vein pressure in dogs. This increase in
thoracic duct pressure was associated with an in-
crease in regional lymphatic pressure and abdominal
lymphatic pressure.

FIGURE 3 Magnetic Resonance Lymphangiography of the Central Lymphatic System

(A) Normal single thoracic duct (white arrow). (B) Bilateral thoracic ducts (black arrows) and abnormal pulmonary lymphatic flow from

thoracic ducts toward lung parenchyma (black arrowheads). Reproduced from Itkin et al. (61).
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The significance of passive lymph flow impairment
leading to lymphatic congestion has been demon-
strated in animals and humans. In an experimental
sheep model (37), an increase in left atrial pressure
and systemic venous pressure resulted in reduced
lymph flow in the efferent duct of the caudal medi-
astinal lymph nodes and increase in pulmonary
congestion. In an invasive hemodynamic study in
patients with HF and preserved ejection fraction (38),
patients who developed lung congestion during ex-
ercise had a similar increase in pulmonary blood flow
as those who did not develop lung congestion. How-
ever, patients who developed lung congestion had
higher pulmonary capillary wedge pressures and
higher CVP than those who did not (38). This suggests
that the development of lung congestion in these
patients was largely driven by impaired lymphatic
drainage of the lungs caused by elevated CVP. Finally,
evidence of interstitial myocardial edema in patients
with HF is directly linked to venous congestion, and
resolution of interstitial myocardial edema follows
cardiac decongestion (39).

THE LYMPHATIC SYSTEM IN HF:

CARDIORENAL SYNDROME

Cardiorenal syndrome (CRS) is a clinical syndrome in
which dysregulation of the heart and/or the kidneys
leads to acute or chronic dysfunction of the other
organ (40). The pathophysiology of CRS is poorly
understood. The most common accepted explanation
for the classical type 1 CRS is renal hypoperfusion
with subsequent renin-angiotensin-aldosterone sys-
tem and sympathetic nervous system activation and
increase in arginine vasopressin secretion (40).
However, this concept may only partially explain the
CRS, as arterial hypotension is uncommon in the
setting of acute HF (41), which would likely suggest a
low likelihood of renal hypoperfusion. Venous
congestion appears to be a far greater contributor to
the pathophysiology of CRS. In patients with cardiac
dysfunction secondary to pulmonary hypertension,
Damman et al. (42) showed that CVP and renal blood
flow were independent determinants of glomerular
filtration rate. In patients admitted with

FIGURE 4 Thoracic Duct Imaging and Cannulation

(A) Fluoroscopic image demonstrating opacification of the thoracic duct with a post-operative left cervical lymph leakage (white arrow) is

shown. (B) The microcatheter is advanced down to the thoracic duct. Embolization coils were deployed by this retrograde access to stop the

leakage.
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decompensated HF, Mullens et al. (43) showed that
worsening renal function was associated with greater
CVP.

Similar to the discussion of the lymphatic system
for tissue congestion in HF, lymph accumulation also
occurs in the kidneys. Renal lymphatic inflow may be
overwhelmed in the setting of raised venous pressure
(ie, venous congestion in HF) or augmented capillary
permeability (eg, systemic inflammation). Finally,
renal lymphatic outflow into the central venous sys-
tem may be impaired caused by the increase in the
CVP, acting as a functional outflow barrier to the
highly congested thoracic duct (23). The result is renal
interstitial edema (12). What makes the kidney unique
is its capsule that limits organ stretch, thus increasing
intrarenal pressure and ultimately causing renal
dysfunction. Renal venous congestion decreases uri-
nary flow and urinary sodium concentration, which is
not merely a reflection of a reduced gradient across
the kidney, but rather is a consequence of increased
renal pressure (44). Increased venous pressure raises
lymph production and clearance from the renal
interstitium up to 4-fold. However, lymph flow rea-
ches a plateau (around w21 mm Hg) beyond which
even decreasing outflow pressure does not change
lymph flow (45).

CLINICAL EVALUATION OF THE

LYMPHATIC SYSTEM

LYMPHATIC IMAGING. Part of the reason why the
lymphatic system is not at the forefront when we
think of HF, vascular congestion, and volume man-
agement is the inherent complexity in visualizing it.
The lymphatic system was not visualized until 1952,
when Kinmonth described pedal lymphangiography
as a method of outlining the lymphatic system (46).
Key features of the lymphatic system in HF are an
increase in size of the thoracic duct and lymph nodes
(47) and an increase in the lymph flow rate (48,49).
Several imaging modalities exist today to evaluate
the central lymphatic system. Although none of these
imaging modalities are clinically used in HF, they can
potentially aid in the assessment of HF severity and
stratify patients who might benefit from
lymphatic intervention.

Pedal lymphangiography involves cannulization of
lymphatic ducts through small incisions on the dorsum
of the feet using 30-gauge needles (50). Ethiodized oil
(radiopaque) is injected through these needles fol-
lowed by normal saline using a special pump; this
eventually results in opacification of the cisterna chyli
and thoracic duct (50). Intranodal lymphangiography
is another technique that involves access of the

bilateral inguinal lymph nodes using 25-gauge spinal
needles under ultrasound guidance followed by in-
jection of oil-based contrast under fluoroscopic guid-
ance (50). Dynamic contrast enhanced magnetic
resonance lymphangiography is an evolving imaging
technique that involves ultrasound-guided injection
of gadolinium-based contrast into the inguinal lymph
nodes followed by imaging of the chest and abdomen
using a 3-dimensional imaging protocol with high
spatial resolution (51) (Figure 3).

THORACIC DUCT CANNULATION. Thoracic duct
cannulation has important diagnostic and therapeutic
values (49). Diagnostically, thoracic duct cannulation
can be used to calculate the lymph flow rate and
pressure within the thoracic duct, characterize the
composition of lymph in the thoracic duct, and aid in
the differential diagnosis of different lymphatic-
related disorder (49). Thoracic duct cannulation also
has several potential therapeutic uses, such as man-
agement of ascites in hepatic cirrhosis, limiting
edema in acute pancreatitis, and possibly with con-
trol of fluid volume in HF (49).

Techniques for accessing the thoracic duct have
evolved over the years. Historically, access to the
thoracic duct is achieved through surgical cannula-
tion of the cervical portion of the duct under local
anesthesia using a polyethylene or silastic catheter
(48,49,52). The catheter can be left in the thoracic
duct for many days as needed. It can then be removed
at bedside with the application of pressure dressing
(48,49,52). This technique is currently not in clinical
use.

Recently, interventional radiologists have accessed
the cervical thoracic duct using a direct percutaneous
access (53,54). Following lymphangiography, fluoro-
scopic images of the cervical portion of the thoracic
duct (left neck area) typically show opacification of
the thoracic duct. Using a combination of ultrasound

TABLE Future Directions and Key Unanswered Questions

Can interventional drainage of lymph from the thoracic duct be used in the therapeutic
management of heart failure (shunting or externalizing)?

What are the implications of molecular and structural differences within the lymphatic
vasculature on congestion in heart failure?

Are there different degrees of these differences among patients? Would that explain different
manifestations of heart failure in different patients with the same degree of volume overload
(eg, more ascites than pedal edema in some patients, whereas others have no ascites)?

What is the role of inflammation in lymphatic disturbance in heart failure and the potential role
of anti-inflammatory agents?

What is the role of pro-lymphangiogenic factors (eg, vascular endothelial growth factor C and D)
in counteracting cardiac remodeling in various conditions, such as ischemia, hypertension,
and aging?

Are patients with congenital lymphatic disorders at increased risk of heart failure?

What is the role of genetics as a driver of heart failure through lymphatic disruption?
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and fluoroscopic guidance, a needle can be advanced
into the cervical portion of the thoracic duct followed
by a guidewire exchanged for a microcatheter, which
can be left in place for several days to drain lymph as
needed (53–55). Interventional radiologists are
accustomed to use this technique for the manage-
ment of thoracic duct leakage (eg, thoracic duct
embolization) with the point of entry most frequently
being the cisterna chylie (56) (Figure 4). Thoracic duct
cannulation is an overall safe procedure with a
complication rate of 3% (eg, leg edema) (56).

TARGETING THE LYMPHATIC SYSTEM IN THE

MANAGEMENT OF HF

Tissue and organ congestion in HF is not merely
attributable to the central venous congestion, but
integrally involves the lymphatic system as well.
Management of acute decompensated HF focuses
initially on venous decongestion via diuretic therapy
and venodilation/vasodilation. Many therapies tar-
geting vasodilation, augmented diuresis, or ultrafil-
tration, in the acute phase of the disease, have failed
to demonstrate improved outcomes compared with
the current standard of care. Diuretic resistance is a
common barrier to achieving euvolemia and increases
time to both symptom resolution and hemodynamic
stability (57). Notably, despite best efforts, clinical
outcomes in hospitalized HF patients remain poor,
and readmission rates for HF consistently top any
other diagnosis in the United States. Thus, we pro-
pose that interventions directly targeting deconges-
tion of the lymphatic system could provide a novel
pathway to relieve tissue congestion and improve
target organ function.

To date, a number of studies have investigated the
feasibility and effectiveness of lymphatic drainage in
HF. Cole et al. (58) constructed a lymphovenous
anastomosis via thoracic duct-to-pulmonary vein
shunt in dogs with right-sided HF. The shunt resulted
in reduced systemic venous pressure, increased uri-
nary sodium excretion within a few hours, and sig-
nificant reduction in ascites in 77% of the dogs. In a
sheep model (59), pulmonary edema was induced by
maintaining a left atrial pressure of 35 mm Hg. Sheep
with thoracic duct drainage had significantly less
pulmonary edema and smaller pleural effusion
compared with sheep without thoracic duct drainage.

Human studies using a therapeutic approach to
lymph drainage are summarized in the following text:

1. In a study in 1963, in patients with intractable HF
who failed to improve with medical therapy,

cervical thoracic duct cannulation resulted in a
significant drop in venous pressures and improve-
ment in symptoms and signs of HF (ie, distended
neck veins, peripheral edema, ascites, dyspnea,
and orthopnea) (48). Thoracic duct cannulation in
these patients also provided important diagnostic
values about thoracic duct changes in patients with
HF; the diameter of the duct in these patients was
2-4 times the normal diameter of about 2 mm, and
the lymph flow rate was 4-12 times the normal rate.
After resolution of signs of HF in these patients,
the investigators reduced the flow rate to the
normal rate (1 mL/min) for several hours; this
resulted in reappearance of signs of HF in these
patients (48).

2. In 1969, a second study (52) tested cervical thoracic
duct cannulation in patients with advanced HF.
Thoracic duct drainage reduced symptom burden
and signs of volume overload, decreased the CVP
from a mean of 32 to 14 cm H2O, and increased the
urinary output (52). The diameter of the thoracic
duct in all of these patients was enlarged up to 6
times the normal diameter.

3. Although lymphovenous anastomosis has not been
studied in humans as a method to manage HF, a
study from 1975 used a thoracic duct-to-internal
jugular vein shunt to treat patients with cirrhosis
and intractable ascites. In all of the patients, the
thoracic duct was dilated an average of 3 times the
normal diameter and demonstrated an increased
intraductal pressure. Almost one-half of the pa-
tients had improvement in their ascites following
the procedure, and 25% of the patients had signif-
icant reduction in the frequency of therapeutic
paracentesis (60).

CONCLUSIONS

The lymphatic system plays a central role in volume
management, and dysregulation of the lymphatic
system underlies most of the classical signs and
symptoms in HF, such as lower extremity and pul-
monary edema and cardiorenal syndrome. Therefore,
we propose that targeting the lymphatic system in HF
can potentially provide a novel pathway to decongest
tissue and improve target organ function. We provide
preclinical and clinical data to support the feasibility
of targeting the lymphatic system in HF through a
number of potential approaches. Novel device-based
interventions are under active investigation to
enhance thoracic duct drainage in acute decom-
pensated HF (Table).
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