Paravalvular leak (PVL) is a frequent complication of transcatheter aortic valve replacement (TAVR) and is seen at a much higher rate after TAVR than after conventional surgical aortic valve replacement. Recent reports indicating that PVL may be correlated with increased late mortality have raised concerns. However, the heterogeneity of methods for assessing and quantifying PVL, and lack of consistency in the timing of such assessments, is a hindrance to understanding its true prevalence, severity, and effect. This literature review is an effort to consolidate current knowledge in this area to better understand the prevalence, progression, and impact of post-TAVR PVL and to help direct future efforts regarding the assessment, prevention, and treatment of this troublesome complication. (J Am Coll Cardiol 2013;61:1125–36) © 2013 by the American College of Cardiology Foundation

Transcatheter aortic valve replacement (TAVR) has become the treatment of choice for inoperable patients with severe aortic stenosis (1) and is comparable to surgical aortic valve replacement (SAVR) for patients at high risk (2). However, paravalvular leak (PVL) is more frequently seen after TAVR than after SAVR, and its potential association with mortality has raised concerns (3–6). Moreover, recent reports have suggested that PVL could negatively impact mid- and long-term prognosis following TAVR (7,8). Although concerning, the lack of standardized quantitative and qualitative methods to assess and categorize PVL and the heterogeneity in the timing of post-procedural assessment of PVL warrant caution in interpretation of these data. Therefore, we sought to perform a systematic review of the current literature to better define the rate, progression over time, predictors, and consequences of PVL after TAVR. Furthermore, recommendations for measuring PVL are provided to improve consistency throughout the literature.

Rate of PVL

Multiple studies have reported the frequency and severity of PVL after TAVR (9). There is, however, significant heterogeneity that is caused by differences in: 1) imaging modalities (transthoracic echocardiography, transesophageal echocardiography, angiography); 2) timing of assessment (immediately after implantation, before discharge, at 30 days); 3) transcatheter heart valve (THV) system; 4) grading scale; and 5) adjudication of events. When PVL was evaluated before hospital discharge and without central core laboratory analysis, its absence was reported in 6% to 59% of patients, whereas moderate or severe PVL was seen in 0% to 24% (1–5,10–16) (Table 1).

Thus far, only the PARTNER (Placement of Aortic Transcatheter Valve) trial has used a central echocardiography core laboratory to evaluate PVL (1,2). PVL was graded in accordance with the American Society of Echocardiography recommendations for native valves (17) because there were no recommendations for prosthetic valve assessment at the start of the trial. In addition, because of the inevitable eccentric nature of the jet and the frequent “spray” of the jet contour in the outflow tract, the color Doppler in the available parasternal short-axis view(s) was weighted in a subjective fashion more heavily than
other signals in providing an integrated assessment. The following definition was applied: no PVL (no regurgitant color flow), trace (pinpoint jet in atrioventricular [AV] short-axis view), mild [jet arc length <10% of the AV annulus short-axis view circumference], moderate [jet arc length 10% to 30% of the AV annulus short-axis view circumference], and severe [jet arc length >30% of the AV annulus short-axis view circumference]. In the PARTNER trial, trace/mild PVL was found in 66% of patients and moderate/severe in 12% (1,2).

Thus far, no prospective direct comparison of the rate of PVL after TAVR has been published between the 2 most frequently used THV systems (balloon-expandable THV, Edwards Lifesciences, Irvine, California; self-expandable CoreValve THV, Medtronic, Minneapolis, Minnesota). However, moderate to severe post-procedural PVL seems to be slightly higher with the CoreValve (9% to 21%) (4–6,18–20) than the Edwards (6% to 13.9%) (1–3,5,18,21,22) device. Recent 1-year data presented from the FRANCE 2 (French Aortic National CoreValve and Edwards 2) Registry seemed to confirm this finding—the use of self-expandable prosthesis was identified as one of the major determinants of significant PVL after TAVR. At patient discharge, self-expandable prosthesis was associated with a moderate to severe PVL rate of 19.8%, compared with 12.2% for balloon-expandable prosthesis (p value not available) (23).

Progression Over Time

One of the initial concerns about PVL was potential worsening during extended follow-up. Because a large percentage of patients are discharged with trace or mild PVL, worsening of PVL could have important consequences on the volume load imposed on the left ventricle (LV), ultimately resulting in significant heart failure. In addition, if many cases progress to clinically significant leakage, hemolysis requiring repeated transfusions or reoperation may further complicate the course of patients.

Despite the lack of “common language” among previous reports in assessment of PVL severity, several studies have reported comparable findings with respect to time trends of PVL severity. Webb et al. (24) reported the evolution of PVL over time in a cohort of 168 patients and found that PVL was generally mild and remained stable between 30-day and 1-year follow-ups, a result that has been confirmed by other studies (Table 2). A recent report by Ussia et al. (16) showed that rates of mild (53%) and moderate (15%) post-procedural PVL had been reduced to 47% and 10%, respectively, at a follow-up of 3 years. Some attrition of the “sickest” patients might have been due to patients with worsening PVL dying, but there were no cases of worsening from mild to moderate/severe regurgitation in individual patient progression of PVL.

Data from the PARTNER trial suggested, however, that PVL at 2 years had increased by ≥1 grade in 22.4% of patients, whereas it remained unchanged in 46.2% and improved by ≥1 grade in 31.5% of patients (Fig. 1) (8). So far, no studies have explored the mechanisms behind improvement or worsening of PVL in individual patients, and measurement methods may explain, at least in part, these changes.

Impact on Clinical Outcomes

After SAVR, moderate to severe residual aortic regurgitation (AR) occurs infrequently in approximately 4% of patients (25). A recent study showed that AR after SAVR was an independent predictor of long-term mortality with a hazard ratio of 1.7 (95% CI: 1.2 to 2.3). The TAVR community has focused extensively on the effect of AR on survival because its prevalence is much higher after TAVR than after SAVR (8). A number of studies have identified AR ≥2+ to be an independent predictor of short- and long-term mortality (Table 3) (3). Furthermore, patients with AR ≥2+ were 10 times more likely to be nonresponders to therapy at 6 months’ follow-up; nonresponsiveness was defined as either death or New York Heart Association classification ≥2.

Few studies have devoted analyses specifically to PVL. This is not surprising because the low post-operative rate of PVL in surgical series makes statistical analysis not meaningful. However, even in TAVR after which post-procedural AR is largely paravalvular, there have been only a few large registries and randomized trials focused on PVL. Data on 663 patients from the Italian registry found that PVL grade ≥2+ was not associated with early 30-day mortality, but multivariate analysis did find a hazard ratio of 3.79 for patients with PVL ≥2+ for late mortality beyond 30 days (6). More disturbingly, although it was generally believed that only moderate or severe regurgitation would impact long-term outcomes (26), the recently published 2-year results from the PARTNER trial showed that even mild PVL was associated with significant mortality (Fig. 2) (8). Multivariable analyses did not identify AR or PVL as independent predictors of mortality in this trial, but, interestingly, there is a trend toward improved survival in patients undergoing TAVR compared with SAVR if PVL was negligible (70% vs. 65%).

Importantly, based on the current literature, the direct causal relationship between PVL and mortality (vs. PVL being a marker for other factors) still needs to be determined. Careful analyses of baseline patient characteristics, the repercussion of all degrees of PVL on LV geometry and remodeling, and the determination of the precise cause of death (cardiovascular vs. noncardiovascular) are needed to
confirm the strength and the nature of this relationship. At this point, any previous observations linking PVL (especially mild) with mortality should be considered hypothesis generating.

Predictors of PVL

Significant PVL most commonly results from: 1) incomplete prosthesis apposition to the native anulus due to patterns or extent of calcification (11,27–30) or annular eccentricity (26); 2) undersizing of the device (10,31,32); and/or 3) malpositioning of the valve (33). These observations seem to be true for both balloon-expandable and self-expandable THVs.

Valve sizing has been shown to be one of the strongest predictors of PVL. A low cover index reflecting a lower degree of oversizing of the prosthesis based on transthoracic echocardiography anulus measurement predicts significant PVL (10). More recently, studies have evaluated the use of multidetector computed tomography (MDCT) for THV sizing, and MDCT showed good predictability and reduced rates of significant PVL (34–37). Furthermore, larger and eccentric annuli were identified as predictors of PVL in multiple studies and most likely reflect inadequate sizing of the THV (3,15,26). A smaller aortic valve area was found to predict PVL in one study, but this was likely because the smaller area indicates a greater degree of calcification (3).

The extent of calcification and asymmetrical distribution, as well as the location of calcium on the aortic wall, valve commissure, or THV landing zone, as a predictor for PVL has been confirmed in several studies (11,26,29,37,38).

In studies specifically evaluating the CoreValve (Medtronic), a lower depth of implantation and a greater angle between the aorta and LV outflow tract were found to predict PVL (14,15).

Assessment of Paravalvular Regurgitation

Angiographic and hemodynamic assessment. Aortic root angiography is an established tool for qualitative and semiquantitative assessment of AR (39). It is readily available during the TAVR procedure and can be quickly and safely executed to provide essential information and initiate adjunctive maneuvers if needed in case of significant (para)valvular AR.

Typically, Sellers criteria are applied to grade AR (40): 1) grade 1 or mild AR corresponds to a small amount of contrast entering the LV during diastole without filling the entire cavity and clearing with each cardiac cycle; 2) grade 2 or moderate AR corresponds to contrast filling of the entire LV in diastole but with less density compared with contrast opacification of the ascending aorta; 3) grade 3 or moderate to severe AR corresponds to contrast filling of the entire LV in diastole equal in density to the contrast opacification of the ascending aorta; and 4) grade 4 or severe AR corresponds to contrast filling of the entire LV in diastole on the first beat with greater density compared with the contrast opacification of the ascending aorta. During the contrast injection, no material may cross the aortic valve leaflets (e.g., guidewires, catheters) because incomplete valve closure may artificially be generated, thus resulting in AR.

Particularly with self-expanding systems, it is important to wait some time (empirically 10 min) after deployment of the bioprosthesis to allow the system to expand to its maximum. The downside of qualitative aortography AR assessment is that it relies on subjective interpretation of unidimensional images; therefore, interobserver and intraobserver variability can be an issue and additional contrast volume required. Moreover, it is difficult to determine the contribution of PVL and central AR.

Classic findings of acute AR (acute drop in the aortic diastolic pressure with or without elevated LV end-diastolic pressure [LVEDP]) may be seen after TAVR and may be suggestive of moderate to severe AR. However, these findings must be interpreted with caution because the concomitant use of sedatives, vasopressors, inotropes, and intravenous fluids all impact hemodynamics, and the presence of material through the aortic valve (e.g., wire) may interfere temporarily with the THV function. Recently, the AR index, the ratio of the end-diastolic gradient across the aortic valve bioprosthesis to systolic blood pressure ([ADP − LVEDP]/ASP; ADP-aortic diastolic pressure, ASP-aortic systolic pressure), was described (41). An AR index <25 was associated with 1-year mortality. Although this association is interesting, more data and validation are needed to establish the role of this new index in the therapeutic decision process after TAVR.

Echocardiographic assessment. Although the native valve regurgitation quantitative grading scheme has been advocated for the evaluation of prosthetic valve regurgitation (42), there are limited data to support the use of these parameters following TAVR. The majority of semiquantitative parameters for assessing AR apply to central regurgitant jets, which are more uniform, making semiquantitative grading schemes more reliable.

Unlike central jets, paravalvular regurgitant jets are commonly eccentric with crescentic, irregular orifices. Because these jets occur between the anulus and sewing ring, jet areas and lengths may not represent the same severity of regurgitation compared with central jets and these parameters cannot be used to reliably assess regurgitant severity. Although guidelines suggest using the circumferential extent of the regurgitant jet as a semiquantitative measure of severity (42), this parameter has not been validated against any quantitative parameters of regurgitation. Even if we accept the limited validation of this scheme for surgical prostheses, the anatomy and physiology of THVs are different than that of surgical valves. In the balloon-expandable valve, paravalvular regurgitation should be assessed just below the skirt; for central jets, the regurgitation should be assessed at the coaptation point of the leaflets. In addition, there is no scheme that specifically addresses the unusual regurgitation that accompanies the THV. The intact calcified cusps and anulus signifi-
<table>
<thead>
<tr>
<th>First Author, Year (Ref. #)</th>
<th>n</th>
<th>Approach</th>
<th>Prosthesis</th>
<th>Imaging Modality</th>
<th>Severity Gradation</th>
<th>Adjunctive Techniques</th>
<th>AR Post-TAVR</th>
<th>Predictors of AR by Multivariable Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detaint, 2009 (10)</td>
<td>74</td>
<td>TF = 46 (62%) TA = 28 (38%)</td>
<td>ES</td>
<td>Echocardiogram (TEE) Site reported (blinded echocardiographist)</td>
<td>0 = absent 1 = trace/mild 2 = mild/moderate 3 = moderate/severe 4 = severe</td>
<td>Post-dilation = 5/74 Valve-in-valve = 2/74</td>
<td>Early post-TAVR (TEE) 0 = 5 (7.0%) 1 = 53 (72.0%) 2 = 12 (16.0%) 3 = 4 (5.0%) 4 = 0 (0%)</td>
<td>±2/4 AR</td>
</tr>
<tr>
<td>Abdel-Wahab, 2011 (3)</td>
<td>690</td>
<td>TF = 644 TA = 26 SC = 22 TAo = 5</td>
<td>ES = 110 (16%) MCV = 580 (84%)</td>
<td>Angiogram Site reported</td>
<td>0 = absent 1 = trace/mild 2 = mild/moderate 3 = moderate/severe 4 = severe</td>
<td>—</td>
<td>Early post-TAVR (angiogram) 0 = 191 (27.7%) 1 = 380 (55.1%) 2 = 103 (14.9%) 3 = 14 (2.0%) 4 = 2 (0.3%)</td>
<td>±2/4 AR</td>
</tr>
<tr>
<td>Sherif, 2010 (14)</td>
<td>50</td>
<td>TF</td>
<td>MCV</td>
<td>Angiogram Echocardiogram Site reported</td>
<td>1 = trivial/mild 2 = moderate 3 = moderate/severe 4 = severe</td>
<td>—</td>
<td>Early post-TAVR (angiogram) 0 = 3 (6.0%) 1 = 27 (54.0%) 2 = 13 (26.0%) 3 = 7 (14.0%) 4 = 0 (0%) Early post-TAVR (TEE) 0 = 9 (18.0%) 1 = 24 (48.0%) 2 = 13 (26.0%) 3 = 4 (8%) 4 = 0 (0%)</td>
<td>±2/4 AR</td>
</tr>
<tr>
<td>John, 2010 (78)</td>
<td>100</td>
<td>TF = 97 (97%) SC = 3 (3%)</td>
<td>MCV</td>
<td>Angiogram Echocardiogram</td>
<td>0 1+ 2+ 3+ 4+</td>
<td>Post-dilation = 34/100 Snare technique = 4/100 Valve-in-valve = 3/100</td>
<td>Early post-TAVR (angiogram) 0 = 35 (35.4%) 1+ = 28 (28.3%) 2+ = 19 (19.2%) 3+ = 8 (8.8%) 4+ = 0 (0%) Early after adjunctive technique (angiogram) 0 = 38 (38.4%) 1+ = 49 (49.5%) 2+ = 11 (11.1%) 3+ = 1 (1.1%) 4+ = 0 (0%)</td>
<td>AgS and DLZ-CS showed significant correlation with grade of PVL after initial MCV deployment</td>
</tr>
<tr>
<td>Takagi, 2011 (15)</td>
<td>79</td>
<td>TF = 62 (78.5%) SC = 17 (21.5%)</td>
<td>MCV</td>
<td>Angiogram Echocardiogram Site reported</td>
<td>0 = absent 1 = mild 2 = moderate 3-4 = severe</td>
<td>Post-dilation = 21/79 Snare technique = 1/79 Valve-in-valve = 2/79</td>
<td>Final result (angiogram) 0 = 21 (26.6%) 1 = 42 (53.2%) 2 = 13 (16.5%) 3 = 3 (3.9%) 4 = 0 (0%)</td>
<td>±2/4 AR</td>
</tr>
</tbody>
</table>

Continued on the next page
Table 1 Continued

<table>
<thead>
<tr>
<th>First Author, Year (Ref. #)</th>
<th>n</th>
<th>Approach</th>
<th>Prosthesis</th>
<th>Adjuvant Techniques</th>
<th>Imaging Modality</th>
<th>Image Planes</th>
<th>Severity Gradiation</th>
<th>Adjunctive Techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamburino, 2011 (6)</td>
<td>64</td>
<td>TF</td>
<td>MCV</td>
<td>Echocardiogram</td>
<td>Site reported</td>
<td>Independent CCE</td>
<td>Mild</td>
<td>Conversion to open surgery = 6.8690</td>
</tr>
<tr>
<td>Tamburino, 2012 (4)</td>
<td>145</td>
<td>TF/SC</td>
<td>MCV</td>
<td>Echocardiogram</td>
<td>Site reported</td>
<td>Independent CCE</td>
<td>Moderate</td>
<td>Conversion to open surgery = 6.8690</td>
</tr>
<tr>
<td>Généreux et al, 2011 (5)</td>
<td>870</td>
<td>TF</td>
<td>AgS</td>
<td>Angiogram</td>
<td>Site reported</td>
<td>TTE (If poor TTE quality)</td>
<td>Severe</td>
<td>Conversion to open surgery = 6.8690</td>
</tr>
</tbody>
</table>

AgS = Agatston score; AR = aortic regurgitation; AVA = aortic valve area; CEC = clinical events committee; DLZ-CS = device-landing zone calcification score; ES = Edwards Sapien; LVOT = left ventricular outflow tract; MCV = Medtronic CoreValve; PVL = paravalvular leak; TF = transfemoral; TEE = tranesophageal echocardiography.

Improved positioning of the TAVR could require advanced imaging techniques for angiographic planning; having the best coplanar view will ensure accurate fluoroscopic local-
Table 2 Progression of Aortic and/or Paravalvular Regurgitation Over Time

<table>
<thead>
<tr>
<th>First Author, Year (Ref. #)</th>
<th>n</th>
<th>Significant Post-Procedural</th>
<th>Significant at 6 Months</th>
<th>Significant at 1 Year</th>
<th>Significant at 2 Years</th>
<th>Significant at 3 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paravalvular leakage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Webb, 2009 (24)</td>
<td>168</td>
<td>30 days</td>
<td></td>
<td>2+ = 37%</td>
<td>3+ = 5%</td>
<td></td>
</tr>
<tr>
<td>Muñoz-Garcia, 2011 (79)</td>
<td>144</td>
<td>72 h</td>
<td>Mild = 40%</td>
<td>Mild = 47%</td>
<td>Moderate = 23%</td>
<td>Moderate = 19%</td>
</tr>
<tr>
<td>Ussia, 2012 (16)</td>
<td>181</td>
<td>Post-procedure</td>
<td></td>
<td>Mild = 53%</td>
<td>Moderate = 15%</td>
<td></td>
</tr>
<tr>
<td>Muñoz-Garcia, 2011 (79)</td>
<td>144</td>
<td>72 h</td>
<td>Mild = 40%</td>
<td>Mild = 47%</td>
<td>Moderate = 23%</td>
<td>Moderate = 19%</td>
</tr>
<tr>
<td>Ye, 2010 (80)</td>
<td>71</td>
<td>30 days</td>
<td>Mild = 26%</td>
<td></td>
<td></td>
<td>3+ = 5%</td>
</tr>
<tr>
<td>Takagi, 2011 (15)</td>
<td>79</td>
<td>30 days</td>
<td>1+ = 49%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rajani, 2010 (84)</td>
<td>46</td>
<td>Within 5 days</td>
<td></td>
<td>Mild = 33%</td>
<td>Moderate = 19%</td>
<td>Moderate/severe = 5%</td>
</tr>
<tr>
<td>Clavel, 2009 (85)</td>
<td>50</td>
<td>Trivial = 38%</td>
<td>6–12 months</td>
<td>Mild = 42%</td>
<td>Moderate = 8%</td>
<td>Moderate/severe = 15%</td>
</tr>
<tr>
<td>Rajani, 2010 (84)</td>
<td>46</td>
<td>Mild = 33%</td>
<td></td>
<td>Moderate = 19%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lefevre, 2011 (86)</td>
<td>130</td>
<td>2+ = 29%</td>
<td>2+ = 24%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buellesfeld, 2011 (20)</td>
<td>126</td>
<td>3+ = 7%</td>
<td>3+ = 0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bleiziffer, 2012 (87)</td>
<td>227</td>
<td>Discharge</td>
<td>6–12 months</td>
<td>Mild = 42%</td>
<td>Moderate = 8%</td>
<td>Moderate/severe = 5%</td>
</tr>
<tr>
<td>Koos, 2011 (29)</td>
<td>57</td>
<td>After implant</td>
<td>Mean 83 ± 80 days</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D’Onofrio, 2011 (88)</td>
<td>504</td>
<td>Discharge</td>
<td>Mean 9.2 ± 6.5 months</td>
<td>"No changes in the degree of AR were found"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gurvitch, 2010 (21)</td>
<td>70</td>
<td>Trivial = 40%</td>
<td></td>
<td></td>
<td></td>
<td>Trivial = 60%</td>
</tr>
<tr>
<td>Waither, 2011 (22)</td>
<td>168</td>
<td>3–6 months</td>
<td></td>
<td>1+ = 46%</td>
<td>2+ = 5%</td>
<td>3+ = 0%</td>
</tr>
</tbody>
</table>

Aortic regurgitation

Bauer, 2010 (83) 88 2+ = 29% 2+ = 24% 2+ = 23% 3+ = 0% 3+ = 0% Rajani, 2010 (84) 46 Within 5 days Mild = 33% Moderate = 19% Moderate/severe = 5% Clavel, 2009 (85) 50 Discharge Trivial = 38% Mild = 42% Moderate = 8% Severe = 0% Lefevre, 2011 (86) 130 Discharge 2+ = 42% 2+ = 25% 3+ = 0% Buellesfeld, 2011 (20) 126 3+ = 5% 2+ = 32% 2+ = 6% 2+ = 3% 1+ = 39% 3+ = 0% 3+ = 0% Bleiziffer, 2012 (87) 227 Discharge Mild = 31% Mild/moderate = 11% Moderate = 6% Moderate/severe = 0% Moderate/severe = 1% Koos, 2011 (29) 57 After implant 1+ = 77% 1+ = 82% 2+ = 9% 2+ = 5% 3+ = 5% 3+ = 0% D’Onofrio, 2011 (88) 504 Discharge 1+ = 30% 2+ = 9% Mean 9.2 ± 6.5 months "No changes in the degree of AR were found" Gurvitch, 2010 (21) 70 Post-procedure Trivial = 40% Mild = 44% Moderate = 6% Waither, 2011 (22) 168 3–6 months 1+ = 51% 2+ = 1% 3+ = 0% 1+ = 46% 2+ = 5% 3+ = 0%
ization of the valve before implantation. In addition, simultaneous "real-time" imaging, such as echocardiogram (both 2D and 3D), 3D angiographic reconstruction via rotational aortic root angiogram (67), and the use of novel imaging systems (68,69), may assist in choosing intraprocedurally the optimal projection for THV positioning and deployment, leading potentially to less frequent PVL.

Intraprocedurally, several interventional alternatives to reduce regurgitation are available (70). Severe calcification of the native valve might prevent the implanted valve from expanding completely against the annulus, leaving residual orifices through which PVL may occur. Post-implantation balloon dilation of the valve might be effective in reducing PVL and may be considered the initial option for patients with PVL (71). A slightly oversized balloon is recommended to fully expand the valve. Studies have shown that post-dilation can be safely performed, with a reduction of the regurgitation in a majority of patients (38). Calcification of the valve significantly influences the success of this intervention. However, in some patients, post-dilation has no effect in reducing AR (15); in addition, post-dilation has been shown to be associated with a higher incidence of cerebrovascular events (38). The effect of post-dilation on survival has yet to be determined.

Especially with the CoreValve, implantation of the valve that is too low is associated with PVL. Repositioning to a higher implantation depth could therefore reduce PVL. However, no retrievable valve is currently available on the market. Therefore, a snaring maneuver has been described, in which the valve is pulled up by attaching a snare to one of the frame loops (72,73). Although successful cases have been reported (74), the valve may also move to the original (too low) position as soon as tension is released (70). An extra word of caution is warranted when the snaring technique is considered in patients with extensively calcified valves because chunks of calcium may detach as a result of friction. Furthermore, there is a risk of damaging the ascending aorta during the snaring maneuver.

A valve-in-valve procedure may be necessary in some cases in which post-dilation or other techniques do not improve the degree of PVL. This is specifically indicated for patients in whom the valve was suboptimally positioned (i.e., too shallow or too deep). In the Italian registry, a valve-in-valve procedure was used in 3.6% of 663 patients.
Compared with patients who were implanted with a single valve, those who underwent valve-in-valve had similar safety and efficacy over a 1-year follow-up. Encouraging results have been reported from other series as well (76). As a final option for patients with continued severe PVL in whom interventional therapy does not suffice, conversion to conventional SAVR may be needed (77). SAVR may be undesirable because these patients are generally at high or extreme risk, but the procedure may be unavoidable in some cases.

Emerging TAVR Technologies

Currently, there is no proven or generally accepted treatment for PVL. However, there are emerging THV systems and technologies that are promising in minimizing PVL after TAVR (Fig. 5). These devices may reduce PVL by better supra-, infra-, or intra-annular sealing (cuff) or by allowing controlled deployment, repositioning, or removal of the THV. Preimplantation calcification debulking (surgically or not) also remains one of the most interesting areas.

Table 4 VARC II Recommendations for Evaluation of Aortic and/or Paravalvular Regurgitation After TAVR

<table>
<thead>
<tr>
<th>Semiquantitative parameters</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diastolic flow reversal in the descending aorta—pulsed wave</td>
<td>Absent or brief early diastolic</td>
<td>Intermediate</td>
<td>Prominent, holodiastolic</td>
</tr>
<tr>
<td>Circumferential extent of prosthetic valve paravalvular regurgitation (%)<sup>a</sup></td>
<td><10</td>
<td>10–29</td>
<td>≥30</td>
</tr>
<tr>
<td>Quantitative parameters<sup>†</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regurgitant volume (ml/beat)</td>
<td><30</td>
<td>30–59</td>
<td>≥60</td>
</tr>
<tr>
<td>Regurgitant fraction (%)</td>
<td><30</td>
<td>30–49</td>
<td>≥50</td>
</tr>
<tr>
<td>Effective regurgitant orifice area (cm²)</td>
<td>0.10</td>
<td>0.10–0.29</td>
<td>≥0.30</td>
</tr>
</tbody>
</table>

^aNot well validated and may overestimate severity compared with quantitative Doppler. †For LVOT > 2.5 cm, significant stenosis criteria is ≤0.20. Adapted with permission from Kappetein et al. (66). VARC = Valve Academic Research Consortium; other abbreviations as in Table 1.

Figure 3 Quantitative Doppler Echocardiography Can Be Used to Calculate the Regurgitant Orifice and Volume

(A) Post–transcatheter heart valve (THV) left ventricular outflow tract (LVOT) diameter (just apical to the THV stent). (B) Right ventricular outflow tract (RVOT) diameter. (C) LVOT Doppler with sample volume located just apical to the THV stent aligned in the short-axis view of the LVOT pulsed Doppler signal just below the THV stent. Stroke volume (SV) across the THV = LVOT area × LVOT velocity time integral (VTI) = 56 ml. (D) RVOT VTI yields an SV across the RVOT of 43 ml. The regurgitant volume = LVOT SV – RVOT SV = 13 ml. AR = aortic regurgitation; PG = pressure gradient.
of development to ensure adequate THV expansion and annulus sealing.

Limitations of the Current Literature

Many limitations of the current literature should be acknowledged. Although some studies have used echocardiography, others have used angiography to assess PVL immediately after THV implantation, making comparison between studies difficult. Most of the studies have used site self-reported PVL severity and lack independent adjudication of clinical events. Although the PARTNER trial had the advantage of a central echocardiography core laboratory...
and adjudication of clinical events, we are still waiting for in-depth analysis of the outcomes associated with PVL. Baseline characteristics of patients with no/trace PVL may be different than those with mild to severe PVL and may explain the difference in mortality and the absence of PVL as a predictor for mortality in several reported multivariable analyses. Finally, better criteria to establish PVL severity are needed to ensure appropriate classification and uniformity among studies.

Conclusions

The association of PVL after TAVR with mortality has made it the new “in vogue” Achilles’ heel of TAVR. Although post-procedural moderate to severe PVL can understandably be a predictor of a worse outcome, the association with mild PVL may be debatable. Given the limitations of the current literature, the nature and strength of the relationship between PVL and mortality are still to be determined. Future studies should standardize the evaluation of PVL and ensure an appropriate classification of its severity. Upcoming THV systems should be designed to minimize PVL, and emerging technology, such as noninvasive calcification debulking of the aortic valvular complex, brings promises of lower PVL rates after TAVR, potentially as low as those after SAVR.

Reprint requests and correspondence: Dr. Martin B. Leon, Columbia University Medical Center, New York-Presbyterian Hospital, 177 Fort Washington Avenue, New York, New York 10032. E-mail: mleon@crf.org.

REFERENCES

Key Words: aortic stenosis ▪ paravalvular leak ▪ TAVI ▪ TAVR.